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Introduction

The idea for this book was conceived by the authors some time in 1988, and
a first outline of the manuscript was drawn up during a summer school on
mathematical physics held in Ravello in September 1988, where all three of
us were present as lecturers or organizers. The project was in some sense
inherited from our friend Marvin Shinbrot, who had planned a book about
recent progress for the Boltzmann equation, but, due to his untimely death
in 1987, never got to do it.

When we drew up the first outline, we could not anticipate how long
the actual writing would stretch out. Our ambitions were high: We wanted
to cover the modern mathematical theory of the Boltzmann equation, with
rigorous proofs, in a complete and readable volume. As the years progressed,
we withdrew to some degree from this first ambition— there was just too
much material, too scattered, sometimes incomplete, sometimes not rigor-
ous enough. However, in the writing process itself, the need for the book
became ever more apparent. The last twenty years have seen an amazing
number of significant results in the field, many of them published in incom-
plete form, sometimes in obscure places, and sometimes without technical
details. We made it our objective to collect these results, classify them, and
present them as best we could.

The choice of topics remains, of course, subjective. There are some
subjects hardly touched in this book: Little reference is made to discrete
velocity models, a very lively branch of kinetic theory. We chose to ignore
this topic in order to limit the size of the book. Also, we confine our atten-
tion mostly to hard sphere interactions (except for some approximations,
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where analytical reasons force us to change the collision kernel). The very
active subject of numerical simulation of the Boltzmann equation is given
only brief coverage in Chapter 10; no attempts are even made to discuss
generalizations of the simulation procedures to physically relevant situa-
tions like gas mixtures, inner degrees of freedom, or chemical reactions. We
refer the reader to the book by Bird and to the extensive literature on nu-
merical experiments; the proceedings of the Biannual Symposia on Rarefied
Gas Dynamics are a good source of information on such results. There are
undoubtedly other related topics we had to ignore out of lack of expertise,
time, or sheer ignorance.

The results with which we are concerned can be classified in essentially
five categories: 1. foundations (derivation and validation of the Boltzmann
equation from the laws of mechanics), 2. existence and uniqueness results, 3.
qualitative behavior, 4. fluid dynamical limits, and 5. numerical simulation.
Results on 2 and 3 follow usually (but not necessarily) hand in hand.

We begin, in Chapter 1, with a historical account of kinetic theory. The
next two chapters contain the formal derivation of the Boltzmann equation
from the BBGKY hierarchy and the main properties of the Boltzmann
equation including results on invariants and the H-theorem. Most of this is
well known and well documented in earlier books; we do, however, present
some recent generalizations regarding the functional equations associated
with the invariants. Chapter 4, the longest chapter in this book, is concerned
with the rigorous derivation and validation of the Boltzmann equation from
the BBGKY hierarchy. This was first done, in a famous paper, by Lanford
in 1975. We go to some length here in order to fill in details that were left
out in Lanford’s original work and in later generalizations done by two of
the present authors. In several appendixes, we explain why the validation
fails for discrete velocity models (Uchiyama’s counterexample), we give a
rigorous derivation of the BBGKY hierarchy, and we address the pathologies
of multiple collisions. A detailed discussion of the origin of irreversibility is
also offered.

The next few chapters are all about existence theory. First, we repeat
at the beginning of Chapter 5 the existence results that actually follow
from the validation done in Chapter 4 (local existence and uniqueness, and
global existence for a rare gas cloud in vacuum). The rest of Chapter 5
contains the formulation and proof of the general global existence (without
uniqueness) theorem proved in 1988 by DiPerna and Lions. In Chapter 6, we
present the existence and uniqueness theory for the spatially homogeneous
Boltzmann equation, mostly relying on pioneering work by Carleman in
the 1930s, Morgenstern in the 1950s, Povzner in the 1960s, and Arkeryd in
1972. Chapter 7 contains the lengthy and very technical proof of asymptotic
stability of Maxwellian equilibria due to Ukai and Asano in 1976. Most of
this chapter deals, by necessity, with properties of solutions of the linearized
Boltzmann equation, as it is the decay in time of such solutions that implies
the asymptotic stability of Maxwellian equilibria.
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Chapter 8 contains a discussion of boundary conditions and is a prepa-
ration for Chapter 9, in which we present recent results on the initial-
boundary value problem. All the chapters on existence and uniqueness the-
ory also deliver results on qualitative properties of the solutions, such as the
approach to equilibrium. Asymptotic convergence to a Maxwellian follows
from the spectral properties of the linearized collision operator in Chapter
7, and from a careful analysis of the H-theorem in Chapters 5, 6, and 9.

In Chapter 10 we give an outline of the most widely used particle
simulation techniques. We abstain from going into convergence proofs, even
though the techniques discussed are now known to converge.

Chapter 11 contains a presentation of the few rigorous results on the
fluid dynamical limit available. We explain how the compressible Euler and
the incompressible Navier-Stokes equations arise in suitable limits from
the Boltzmann equation, how the H-functional is related to the entropy
concept for conservation laws, and we outline the proof of one of the rigorous
results on the transition regime between the Boltzmann equation and the
compressible Euler equations.

This book can only be a temporary reference point in a rapidly devel-
oping field such as kinetic theory, but we hope that it can at least serve this
purpose. Our thanks must go to friends and colleagues for advice, valuable
comments, and help. In particular, we appreciate encouragement and con-
tributions by Leif Arkeryd, Raffaele Esposito, and Herbert Spohn. Rosalie
Rutka and Georgina Smith typed part of the manuscript, and we appreciate
their laying the seed for the final TEX file; Denton Hewgill and Maurizio
Vianello helped whenever advice regarding TEX questions was needed.

Our wives Silvana, Leslie, and Silvia deserve a big acknowledgment for
their patience while we spent endless hours over proofs and in front of word
Processors.

Milan, Victoria, and Rome, Spring 1994.

Numbering and References

In order to keep the notation simple, equations are numbered by section
number in each chapter. For example, if you read in Section 2 of Chapter
3, the fourth equation in that section would be numbered (2.4), and would
be referred to as (2.4) in the rest of Chapter 3, but as (3.2.4) in the rest
of the book. Theorems, definitions, and lemmas, which are not as numer-
ous as equations, are numbered by chapter and section, so, for example,
Theorem 4.5.1 refers to the first theorem in the fifth section of the fourth
chapter. Definitions, theorems, and lemmas are in this fashion numbered
consecutively in each section of the book.
References are listed at the end of each chapter, but before any

appendixes.



1

Historical Introduction

1.1 What is a Gas? From the Billiard Table to
Boyle’s Law

As early as 1738 Daniel Bernoulli advanced the idea that gases are formed
of elastic molecules rushing hither and thither at large speeds, colliding and
rebounding according to the laws of elementary mechanics. Of course, this
was not a completely new idea, because several Greek philosophers asserted
that the molecules of all bodies are in motion even when the body itself
appears to be at rest. The new idea was that the mechanical effect of the
impact of these moving molecules when they strike against a solid is what
is commonly called the pressure of the gas. In fact if we were guided solely
by the atomic hypothesis, we might suppose that the pressure would be
produced by the repulsions of the molecules. Although Bernoulli’s scheme
was able to account for the elementary properties of gases (compressibility,
tendency to expand, rise of temperature in a compression and fall in an
expansion, trend toward uniformity), no definite opinion could be passed
on it until it was investigated quantitatively. The actual development of the
kinetic theory of gases was, accordingly, accomplished much later, in the
nineteenth century.

Within the scope of this book, the molecules of a gas will be assumed
to be perfectly elastic spheres that move according to the laws of classical
mechanics. Thus, e. g., if no external forces, such as gravity, are assumed
to act on the molecules, each of them will move in a straight line unless it
happens to strike another sphere or a solid wall. Systems of this kind are
usually called billiards, for obvious reasons.
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Although the rules generating the dynamics of these systems are easy
to prescribe, the phenomena associated with the dynamics are not so sim-
ple. They are actually rather difficult to understand, especially if one is
interested in the asymptotic behavior of the system for long times (ergodic
properties) or in the case when the number of spheres is very large (kinetic
and hydrodynamical limits). Both aspects of the dynamics of hard spheres
are relevant when dealing with a gas, but we shall now concentrate upon the
problem of outlining the behavior of this system when the number of the
particles is very large. This is because there are about 2.7 - 10'° molecules
in a cubic centimeter of a gas at atmospheric pressure and a temperature
of 0°C.

Given the enormous number of particles to be considered, it would
of course be a perfectly hopeless task to attempt to describe the state of
the gas by specifying the so-called microscopic state, i. e. the position and
velocity of every individual particle, and we must have recourse to statistics.
This is possible because in practice all that our observation can detect are
changes in the macroscopic state of the gas, described by quantities such
as density, velocity, temperature, stresses, and heat flow, which are related
to the suitable averages of quantities depending on the microscopic state.
A simple example is provided by an elementary calculation of the pressure
in a container at rest, which will be presently sketched.

Let P be a point of the wall of the vessel, assumed to be flat, and let us
take the z-axis in the direction of the normal to the wall, pointing toward
the wall. Then a molecule with mass m, hitting the wall with velocity &,
having components &1, €2, €3, (£1 > 0) will transfer a momentum mé; to the
wall; and a molecule recoiling from the wall with velocity £, having com-
ponents &1, £2,£&3 (&1 < 0) will transfer a momentum m|£;| to the wall. If
one constructs a cylinder upon a piece of the wall of area AS and side At
(Fig. 1), all molecules with velocity £ in this cylinder will strike or have
struck (according to the sign of £;) that piece of wall in a time interval
At. Since the volume of the cylinder is |£;|AtAS, we conclude that if all
the molecules had velocity £, the total amount of momentum transferred
to the wall in time At would be n(|¢;|AtAS)(m|é&1|) = nmé2ASAt, where
n denotes the number of molecules per unit volume. If the molecules have
different velocities we must take an average over their distribution of ve-
locities and obtain nmé2ASAt, where the superimposed bar denotes the
average value of a quantity. The transfer of momentum equals the impulse
exerted on the area AS in time At; hence a force per unit area nmé? is
exerted by the wall on the gas and hence by the gas on the wall. In order
to proceed, at this point we need an assumption of symmetry: if the gas
is in a statistical equilibrium in a container macroscopically at rest, all the
velocity components have the same probability distribution and hence

1.1) g==8
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As
P
&,At
EAL
FIGURE 1.
Thus
(12) =B+ =0+ +8=8

and the force per unit area, which is nothing other than the gas pressure
p, will be given by:

1 —
(1.3) p= §nm£2.

If V is the volume of the gas and N is the total number of molecules, it
follows from this equation on multiplication by V| since nV = N, that

(1.4) pV = -;;Nmzf = gMe

where e is the (kinetic) energy per unit mass and M is the total mass.
Thus the product of pressure and volume depends only on the number of
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molecules and the average kinetic energy of a molecule. But according to
an empirical law, the law of Boyle (1660) and Mariotte (1676), at constant
temperature the product of the pressure and volume of a given amount
of ideal gas is constant; we see that this law is reproduced if we make
the reasonable assumption (which may be tantamount to a definition of
temperature according to kinetic theory) that the average kinetic energy e
only depends upon the (absolute) temperature 7. In fact if we take into
account the relation that combines the laws of Boyle-Mariotte and Gay-
Lussac and Charles:

(1.5) pV = MRT

where R is the gas constant, we conclude that

(1.6) e= gRT.

We remark that R is constant for a given gas but is related to the
molecular mass by R = k/m, where k is the Boltzmann constant (k =
1.38 - 1023 J/°K); this follows, by considering a mixture of two different
gases in the same vessel (Cercignani®, 1988). We also remark that what
has been said applies only to monatomic gases, which are well modeled by
perfectly elastic spheres, and a gas sufficiently rarefied so that in a neighbor-
hood of the wall we may neglect intermolecular collisions. A more careful
analysis would show that the degree of rarefaction required for the argu-
ment to be valid is such that the product of the number density n by the
cube of the molecular diameter o must be negligible compared to unity.
At this point, however, a first question of principle must be considered.
If we knew the exact position and velocity of every molecule of the gas at
a certain time instant, the further evolution of the system would be com-
pletely determined, according to the laws of mechanics; even if we assume
that at a certain moment the position and velocities of the molecules satisfy
certain statistical laws, we are not entitled to expect that at any later time
the state of the gas will conform to the same statistical assumptions, such
as that embodied in Eq. (1.1), unless we prove that this is what mechan-
ics predicts. In this case, it turns out that mechanics easily provides the
required justification, but things are not so easy if we go further and ask
how can we guarantee that the previous statistical assumption will be of
practical importance, i.e., will actually be satisfied for a gas in equilibrium
in a container. And questions become much more complicated if the gas is
not in equilibrium, as is, e. g., the case for air around a flying vehicle.
Questions of this kind have been asked since the appearance of the
kinetic theory of gases; today the matter is relatively well understood and
a rigorous kinetic theory is emerging, as this book is trying to illustrate.
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The importance of this matter stems from the need of a rigorous founda-
tion of such a basic physical theory not only for its own sake, but also as a
prototype of a mathematical construct central to the theory of nonequilib-
rium phenomena in large systems. Before describing the tools and results
of rigorous kinetic theory, we shall first give a quick look at the history of
the subject.

1.2 Brief History of Kinetic Theory

The first atomic theory is credited to Democritus of Abdera who lived in the
fifth Century BC It was supported by other philosophers such as Leucippus
(fifth Century BC) and through Epicurus (341-270 BC) it was transmitted
to Romans. The most complete exposition of the view of the ancients is
the famous poem of Lucretius (99-55 BC), De Rerum Natura (“On the Na-
ture of the Things”). In medieval times some Arabian thinkers accepted the
atomic theory, which was, however, fiercely fought by the scholastic theolo-
gians. During the Renaissance period, ideas related to atomism occur in the
writings of Giordano Bruno (1548-1600), Galileo Galilei (1564-1642), and
Francis Bacon (1561-1626). Later the French philosopher Petrus Gassendi
(1592-1655) considered the idea of the atomic constitution of matter as a
basic point of his philosophy. As mentioned in the previous section, it is
only with Daniel Bernoulli (1700-1782) that this idea penetrates into the
scientific domain, with an explanation of the gas pressure, and gives birth
to the kinetic theory of gases. The same theory was afterward brought for-
ward independently by George-Louis Lesage of Geneva (1724-1803), who
devoted most of his work to the explanation of gravitation as due to the
impact of atoms. Then John Herapath (1790-1869), in his Mathematical
Physics, published in 1847, made a much more extensive application of the
theory, and James Prescott Joule (1818-1889) estimated the average ve-
locity of a molecule of hydrogen. A paper by K. Kronig (1822-1879) had
the important role of drawing the attention of Rudolf Clausius (1822-1888)
to the subject. With him, kinetic theory entered a mature stage, with the
introduction of the concept of mean free path in 1858. In the same year,
on the basis of this concept, James Clerk Maxwell (1831-1879) developed
a preliminary theory of transport processes. In the same paper he gave
a heuristic derivation of the velocity distribution function that bears his
name. However, he almost immediately realized that the mean free-path
method was inadequate as a foundation for kinetic theory, and in 1866, he
developed a much more accurate method?! based on the transfer equations,
and he discovered the particularly simple properties of a model, according
to which the molecules interact at distance with a force inversely propor-
tional to the fifth power of the distance (now commonly called Maxwellian
molecules). In the same paper he gave a better justification of his formula
for the velocity distribution function for a gas in equilibrium.
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With his transfer equations, Maxwell had come very close to an evolu-
tion equation for the distribution, but this step® must be credited to Ludwig
Boltzmann (1844-1906). The equation under consideration is usually called
the Boltzmann equation and sometimes the Maxwell-Boltzmann equation
(to recognize the important role played by Maxwell in its discovery).

In the same paper, where he gave a heuristic derivation of his equation,
Boltzmann deduced an important consequence from it, which later came
to be known as the H-theorem. This theorem attempts to explain the irre-
versibility of natural processes in a gas, by showing how molecular collisions
tend to increase entropy. The theory was attacked by several physicists and
mathematicians in the 1890s, because it appeared to produce paradoxical
results. However, within a few years of Boltzmann’s suicide in 1906, the
existence of atoms had been definitely established by experiments such as
those on Brownian motion.

The paradoxes indicate, however, that some reinterpretation is neces-
sary. Boltzmann himself had proposed that the H-theorem be interpreted
statistically; later, Paulus Ehrenfest (1880-1933), together with his wife Ta-
tiana, gave a brilliant analysis of the matter, which elucidated Boltzmann’s
ideas and made it highly plausible, at least from a heuristic standpoint. A
rigorous analysis, however, was still to come.

In the meantime, the Boltzmann equation had become a practical tool
for investigating the properties of dilute gases. In 1912 the great mathe-
matician David Hilbert (1862-1943) indicated'® how to obtain approximate
solutions of the Boltzmann equation by a series expansion in a parameter,
inversely proportional to the gas density. The paper is also reproduced as
chapter XXII of his treatise entitled Grundzige einer allgemeinen Theo-
rie der linearen Integralgleichungen. The reasons for this are clearly stated
in the preface of the book (“Neu hinzugefiigt habe ich zum Schluss ein
Kapitel iiber kinetische Gastheorie. [...] erblicke ich in der Gastheorie die
glinzendste Anwendung der die Auflésung der Integralgleichungen betref-
fenden Theoreme”).

In about the same year (1916-1917) Sidney Chapman® (1888-1970)
and David Enskog'! (1884-1947) independently obtained approximate so-
lutions of the Boltzmann equation, valid for a sufficiently dense gas. The
results were identical as far as practical applications were concerned, but
the methods differed widely in spirit and detail. Enskog presented a system-
atic technique generalizing Hilbert’s idea, while Chapman simply extended
a method previously indicated by Maxwell to obtain transport coeflicients.
Enskog’s method was adopted by S. Chapman and T. G. Cowling in their
book The Mathematical Theory of Non-uniform Gases and thus became to
be known as the Chapman-Enskog method.

Then for many years no essential progress in solving the equation came.
Rather the ideas of kinetic theory found their way in other fields, such as
radiative transfer, the theory of ionized gases, and, subsequently, in the the-
ory of neutron transport. Almost unnoticed, however, the rigorous theory
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of the Boltzmann equation had started in 1933 with a paper® by Tage Gillis
Torsten Carleman (1892-1949), who proved a theorem of global existence
and uniqueness for a gas of hard spheres in the so-called space homogeneous
case. The theorem was proved under the restrictive assumption that the ini-
tial data depend upon the molecular velocity only through its magnitude.
This restriction is removed in a posthumous book by the same author?.

In 1949 Harold Grad (1923-1986) wrote a paper!®, which became
widely known because it contained a systematic method of solving the
Boltzmann equation by expanding the solution into a series of orthogo-
nal polynomials. In the same paper, however, Grad made a more basic
contribution to the theory of the Boltzmann equation. In fact, he formu-
lated a conjecture on the validity of the Boltzmann equation. In his words:
“From the preceding discussion it is possible to see along what lines a
rigorous derivation of the Boltzmann equation should proceed. First, from
equilibrium considerations we must let the number density of molecules, N,
increase without bound. At the same time we would like the macroscopic
properties of the gas to be unchanged. To do this we allow m to approach
zero in such a way that mN = p is fixed. The Boltzmann equation for elas-
tic spheres, (2.37) has a factor 02/m in the collision term. If o is made to
approach zero at such a rate that o2 /m is fixed, then the Boltzmann equa-
tion remains unaltered. [...] In the limiting process described here, it seems
likely that solutions of Liouville’s equation attain many of the significant
properties of the Boltzmann equation.”

In the 1950s there were some significant results concerning the Boltz-
mann equation. A few exact solutions were obtained by C. Truesdell?® in
the U.S.A. and by V. S. Galkin!?13 in the Soviet Union, while the existence
theory was extended by D. Morgenstern??, who proved a global existence
theorem for a gas of Maxwellian molecules in the space homogeneous case.
His work was extended by L. Arkeryd!? in 1972.

In the 1960s, under the impact of the problems related to space re-
search, the main interest was in the direction of finding approximate so-
lutions of the Boltzmann equation and developing mathematical results
for the perturbation of equilibrium®®. Important methods developed by H.
Grad'* were brought to completion much later by S. Ukai, Y. Shizuta, and
K. Asano?3:24,26,

The problem of proving the validity of the Boltzmann equation was
still completely open. In 1972, C. Cercignani’ proved that taking the limit
indicated by Grad in the passage quoted above (now called the Boltzmann-
Grad limit) produced, from a formal point of view, a perfectly consistent
theory, i. e. the so-called Boltzmann hierarchy. This result clearly indicated
that the difficulties of the rigorous derivation of the Boltzmann equation
were not of a formal nature but were at least of the same order of diffi-
culty as those of proving theorems of existence and uniqueness in the space
inhomogeneous case. Subsequently, O. Lanford proved?° that the formal
derivation becomes rigorous if one limits oneself to a sufficiently short time
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interval. The problem of a rigorous, globally valid justification of the Boltz-
mann equation is still open, except for the case of an expanding rare cloud
of gas in a vacuum, for which the difficulties were overcome by R. Illner and
M. Pulvirentil”-!®, after that Illner and Shinbrot had provided the corre-
sponding existence and uniqueness theorem for the Boltzmann equation?®.

Recently, R. Di Perna and P. L. Lions'® have proved a global existence
theorem for quite general data, but several important problems, such as
proving that energy is conserved or controlling the growth of density are
still open.

The last part of this historical sketch has come so close to current
research that it would be inappropriate to continue it here. The rigorous
theory developed so far and the open problems will be described in the next
chapters.
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2

Informal Derivation of the
Boltzmann Equation

2.1 The Phase Space and the Liouville Equation

As indicated in the previous chapter, we shall investigate the hard sphere
model of a gas. The reason for choosing such a simple model is based on
the expectation that in the asymptotic regimes (hydrodynamic and kinetic)
in which we are interested the general features should not depend on the
particular type of interaction between the particles.

In order to discuss the behavior of a system of N (identical) hard
spheres it is very convenient to introduce the so-called phase space, i.e., a
6 N-dimensional space where the Cartesian coordinates are the 3N compo-
nents of the the N position vectors of the sphere centers z; and the 3NV
components of the N velocities &;. In this space, the state of the system,
if known with absolute accuracy, is represented by a point whose coor-
dinates are the 6/N values of the components of the position vectors and
velocities of the N particles. Let us denote by z the 6 N-dimensional posi-
tion vector of this point in the phase space. If the state is not known with
absolute accuracy, we must introduce a probability density P(z,t), which
gives the distribution of probability in phase space [whose precise meaning
is given by Eq. (1.1)]. Given Py(z), its value at ¢ = 0, we can compute
P(z,t) (t > 0), provided we have an evolution equation for it. Here we
have a difficulty because the hard sphere time evolution is discontinuous;
in fact, when two particles collide, their velocities change instantaneously
from incoming to outgoing. To deal with this difficulty, first we cancel the
parts of the phase space corresponding to overlapping spheres and then we
add suitable boundary conditions at the border of the remaining domain.
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The evolution z = T%z, of each phase point 2o is then uniquely defined,
provided that the phase points that lead to triple and higher collisions and
those leading to infinitely many collisions in a finite time are neglected.
The set of such points is of zero Lebesgue measure, as will be discussed in
Chapter 4.

The probability that z will be found in a region D of phase space at
time t is

(1.1) Prob(z € D) = / P(z,t)dz
D

where dz denotes the Lebesgue measure in phase space. We remark that
by writing Eq. (1.1) we are implicitly using the assumption that the mea-~
sure defining the probability is absolutely continuous with respect to the
Lebesgue measure.

The above probability is equal to the probability that the representa-
tive point was, at ¢ = 0, in the region D consisting of the points 23, which
are the inverse images of the points z € D in the mapping z = T%2. In
formulas, Do = {20 | T*20 € D}. Hence:

(1.2) /;)P(z,t)dz=/ Py(z0)dzp.

Do

We can now exploit the fact that the set of values of z € D coincides with
the set of points z = Tz, with z9 € Dy and change the integration variable
in the left-hand side from z to z5. We obtain

(1.3) /D P(z,t)dz = / P(Tt20,)J (2 20)dz0

0

where J(z/z,) is the Jacobian determinant of the old variables with respect
to the new ones (which turns out to be positive; by continuity, if no collisions
occur, but also in the presence of collisions, see below). Comparison of Egs.
(1.3) and (1.2) gives, due to the arbitrariness of Dy,

(1.4) P(T*2,,t)J(2/ %) = Po(z0).

If we assume that no forces act on the particles, the Jacobian turns out to
be unity. In fact, between two collisions each particle evolves independently,
with x; = zg; + €oit, & = €oi, were xg; and &y; are the initial values of the
position and velocity vectors of the ith particle. It is clear that the Jacobian
is unity (see Problems 1 and 2). We have to examine what happens at a
collision.
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When two spheres collide, conservation of momentum and energy must
hold. Thus the velocities of the two particles after the impact (£;,&;) and
before the impact (£}, £5) satisfy:

GL+&E=E+&

(1.5) &1 + l€2* = I€51* + l€z ).

Let us introduce a unit vector n directed along £; —£7; this direction bisects
the directions of V = £; — & and -V’ = —(£] — &) (therefore, see Fig. 2,
n = (z; — T2)/|z1 — 2| is the unit vector directed along the line joining
the centers of the spheres, since the change of momentum at the moment
of the impact between two smooth spheres must be directed along such a
line). It is not hard to see (Problem 3) that Egs. (1.5) imply

& =& —n[n- (& - &)
(1.6) & =& +nn- (& - &)

’ b
€1_ 2

FIGURE 2.

We remark that the relative velocity
(L.7) V=&-&

satisfies
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(1.8) V=V -=2n(n-V)

i.e., undergoes a specular reflection at the impact. This means that if we
split V' at the point of impact in a normal component V,,, directed along n
and a tangential component V; (in the plane normal to n), then V,, changes
sign and V; remains unchanged in a collision (Problem 4).

FIGURE 3.

It is now easy to compute the Jacobian of the velocities after the impact
with respect to those before. The easiest way is to first transform each set
of variables to the corresponding variables V' (the relative velocity) and
€ = (& + &) (the velocity of the center of mass). These transformations
are easily seen to have unit Jacobian (Problem 5). The Jacobian matrix
of the transformation from (£,V) to (¢/,V’) is now diagonal if we adopt
normal and tangential components; it differs from the unit matrix, because
one entry (corresponding to the normal component) is —1 rather than 1.
Hence the Jacobian is —1.

We now need the Jacobian of the position variables after the impact
with respect to those before the impact. It is clear that this Jacobian is —1,
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because the volume elements change their relative orientation upon impact
(see Fig. 3).

The Jacobian J of the transformation occurring in phase space when
a collision occurs is clearly the product of the Jacobians corresponding to
the transformations undergone by space and velocity variables, respectively.
Hence J = (-1)-(-1) = 1.

We remark that the hard sphere dynamics can be obtained as a limiting
case of the dynamics in which the particles interact via a repulsive potential
that becomes infinity for r < ¢ and zero for r > o; this is easy to check
for the two-body problem, although is a delicate question for an N-body
problem. In the case of this potential one can easily prove the Liouville
theorem on the invariance of the volume in phase space during the evolution,
because then z = Z(z), where Z is a solenoidal field. Then J(z/z) = 1
and, by taking the limit, the same result holds for hard spheres. This is a
different proof of the relation that we need.

We conclude that, in the absence of forces acting on the particles dur-
ing their movement between two subsequent collisions, Eq. (1.4) simply
becomes

(19) P(tho,t) = P()(Zo).

Hence P is constant along the trajectory of z in phase space.
P is defined in the set 2V x R3N where 2 is a subset of ®* where the
N particles move; it is, however, 0 at the points of this set that satisfy:

(1.10) 3,5 €{1,2,...,N} (i#j) : |zi—zjl<o

where o is the sphere diameter. In fact, if 2 is a point in the set defined
by (1.10), the ith and jth molecule would overlap, which is impossible,
since they are assumed to be hard spheres. It is, accordingly, convenient
to consider the set A, obtained by deleting from 2V x 3V the points
satisfying (1.10).

If P is a differentiable function of the variables z,¢ in A4, Eq. (1.9)
implies that:

0P . 0P
(1.11) WJFZE&FE_O (z € A).

In fact, since 2 = T%zy describes a rectilinear motion of all the particles
inside A , it is obviously true that

(1.12) dz/dt = (&1,&,...,&n,0,0,...,0)

and Eq. (1.11) follows from Eq. (1.9) by differentiation. Eq. (1.11) is called
the Liouville equation for the system under consideration.



18 2. Informal Derivation of the Boltzmann Equation

Eq. (1.11) is a partial differential equation, and as such, must be ac-
companied by suitable initial and boundary conditions. The initial condition
simply assigns the value of P at ¢t = 0. As for the boundary conditions, they
are present even if the gas is free to move without bounds in space (i.e.,
if 2 = R3). In fact, we had to introduce boundaries in order to define A
(where (1.11) holds); these are the boundaries with the regions where the
spheres would overlap. At these boundary points we must impose the con-
dition dictated by Eq. (1.9); since P is always constant along the trajectory
in A {boundary included), but the velocity variables undergo a discontinu-
ous transformation there, we must impose that P is the same at 2 and 2/,
where z and 2’ indicate points of the boundary of A that are transformed
one into the other by the transformation associated with an impact:

(1.13) P(z,t)=P(z',t) (2 €dA),

or, in more detail:

(114) P(xl,€17 eoe 71‘2'7611, v 7xj;€j7~ .. 1:L'N)€Nat) =
P(zy,&1,. . 24,8 —ngi(ng; - Vig), .. 5,65 +naj(ngg - Vij), ..., 2N, €N, E)
if foi—al =0 (i#])

where V;; = §; — {; and n;; is the unit vector directed as z; — z;.

If 2 does not coincide with the entire space R3, then there are addi-
tional boundary points corresponding to those z for which at least one z; is
on 84 . A suitable boundary condition must be assigned at these points as
well. Frequently one assumes specular reflection (£ = £; — n;(n; - £;), where
n; is the normal at z;), but other boundary conditions are used in practice
(see Chapter 8). If {2 is a box, periodicity conditions are very popular; in
that case one can avoid mentioning the boundaries and talk about a flat
torus (after identification of opposite faces).

An important point to be mentioned is the circumstance that the ini-

tial values that we shall allow are symmetric upon interchange of any two
particles (since the particles are identical):

(115) PO($1’§17""miigi)'")xj7§j,“'7$N7§N) =
PO('Z'17§17'"xjagju"'axiygiv'“7zN’£N)' V(l,])

Since the time evolution is consistent with this symmetry (see Problems
9 and 10), Eq. (1.10) shows that the same symmetry is preserved for ¢ > 0.
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Problems

1. Show that if a particle’s motion is uniform and rectilinear, then the
Jacobian of the position and velocity components at time ¢ with respect
to their initial data is unity.

2. Show that in a system of N noninteracting particles the Jacobian of
the position and velocity components at time ¢ with respect to their
initial data is the product of the Jacobians corresponding to the single
particles.

3. Show that Egs. (1.6) hold. (Remark: by definition we have {; = £ —nC,
where C is a scalar to be determined. . .; in an equivalent way, project
Eq. (1.5) along n and in a plane perpendicular ton...)

4. Check that if we split the relative velocity V at the point of impact into
a normal component V,, directed along n and a tangential component
V; (in the plane normal to n), then V, changes sign and V; remains
unchanged in a collision.

5. Show that if we transform from the variables £;,&s to the variables V
(the relative velocity) and £ = (&1 +&2) (the velocity of the center of
mass), the transformation has unit Jacobian.

6. Check, by a direct calculation that the Jacobian of the transformation

(1.7) is —1, if the collision occurs in a plane ( i.e., §;,&2,§], and &

have just two components, while the components of n can be written

(cos 6,sin @), where 0 is a suitable angle).

Check Eq. (1.13).

Check Eq. (1.12).

9. Check that if the time evolution is dictated by z; = xzo; + oit, & =
&i (1 = 1,2,...,N), then if we interchange the initial data of two
particles, say the first and the second, the solution changes only by the
same interchange, i.e., the values of z; and &; at time ¢ become those
previously taken by 2 and &2 and the other way around.

10. Check that Eq. (1.12) remains unchanged if two particles are inter-
changed. »

oo~

2.2 Boltzmann’s Argument in a Modern Perspective

The Liouville equation discussed in the previous section is a useful concep-
tual tool, but it cannot in any way be used in practical calculations because
of the large number of real variables on which the unknown depends (of the
order of 10%°). This was realized by Maxwell and Boltzmann when they
started to work with the one-particle probability density, or distribution
function P(M)(z,¢,t). The latter, at variance with the function P(z,t) used
in the previous section, depends on just seven real variables, i.e. the compo-
nents of the two vectors z and £ and time ¢. In particular, Boltzmann wrote
an evolution equation for P() by means of a heuristic argument, which we
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shall try to present in such a way as to show where extra assumptions are
introduced. One should realize that, as we shall see, one can obtain an exact
equation for P() from the Liouville equation, but this equation contains
P®); a closed equation for P(!) is an extremely important step in the treat-
ment of the problem. The equation written by Boltzmann and bearing his
name can be justified in terms of statistical independence, as we shall see
later.

Let us first consider the meaning of P(!)(x, £, t); it gives the probability
density of finding one fixed particle (say, the one labeled 1) at a certain
point (z,£) of the six-dimensional reduced phase space associated with the
position and velocity of that particle. It is thus clear that there is a simple
relation between P() and P; in fact

(2.1)

P(l)(fﬂl,fl,t) =/ P(xl,617x27§27"'7$N,£Nat)d$2d§2,'-'ded£N
IxXRIN-3

since P(!) is the probability of finding the first particle in a certain state no
matter what the states of the particles labeled 2,..., N are (in Eq. (2.1),
of course, P is set equal to zero outside A x ®3") . Thus, in principle, the
evolution of P(1) is contained in the Liouville equation; this remark will be
useful later, but will presently be disregarded. In this section we shall try
to write an equation for P(!) on the basis of its physical significance.

Let us remark that, in the absence of collisions, P() would satisfy the
same equation as P [except that we should take N = 1 in Eq. (1.11)].
Accordingly we must evaluate the effects of collisions on the time evolution
of P(1). We remark that the probability of occurrence of a collision will be
related to the probability of finding another molecule with a center exactly
one diameter from the center of the first one, whose distribution function
is P(Y), Thus, generally speaking, in order to write the evolution equation
for P() we shall need another function, P®, which gives the probability
density of finding, at time ¢, the first molecule at z; with velocity &, and
the second at z, with velocity &;; obviously P = P@)(zy, €&, z,,1).
Generally speaking we shall have

ap opPW
ot Y Tog, T U7

(2.2) 5o

Here Ldx,dé;dt gives the expected number of particles with position be-
tween z; and z; +dz; and velocity between £, and &; + d§; that disappear
from these ranges of values because of a collision in the time interval be-
tween t and t + dt and Gdz,d§;dt gives the analogous number of particles
entering the same range in the same time interval. The count of these num-
bers is analogous to the one made in Chapter 1 to compute the transfer
of momentum from the molecules to a wall, provided we use the trick of
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imagining particle 1 as a sphere at rest and endowed with twice the ac-
tual diameter ¢ and the other particles to be point masses with velocity
(& — &) = V5. In fact, each collision will send particle 1 out of the above
range and the number of the collisions of particle 1 will be the number
of expected collisions of any other particle with that sphere. Since there
are exactly (V — 1) identical point masses and multiple collisions are dis-
regarded, G = (N — 1)g and L = (N — 1), where the lowercase letters
indicate the contribution of a fixed particle, say particle 2. We shall then
compute the effect of the collisions of particle 2 with 1.

Let z2 be a point of the sphere such that the vector joining the center
of the sphere with x5 is on, where n is a unit vector. A cylinder with height
[V2-n|dt and base area dS = o2dn (where dn is the area of a surface element
of the unit sphere about n) will contain the particles with velocity &; hitting
the base dS in the time interval (¢, ¢+ dt); its volume is 02dn|V, - n|dt. Thus
the probability of a collision of particle 2 with particle 1 in the ranges
(1,21 +dx1), (€1, & +dE1), (T2, T2 +dx2), (€2, E2 +dEs), (t, t+ dt) occurring
at points of dS is P®)(zy, x5, &1, &2, t)dx1dE déo X o%dn|Vs - n|dt. If we want
the probability of collisions of particles 1 and 2, when the range of the
former is fixed but the latter may have any velocity £; and any position z;
on the sphere (i.e. any n), we integrate over the sphere and all the possible
velocities of particle 2 to obtain:

2.3)
ldzyd;dt = dﬂ?ld&dt/ / P (21,8, 21 + on, &2,1)|Va - n|o?dnde,
w3 Js_

where S_ is the hemisphere corresponding to V5 - n < 0 (the particles
are moving one toward the other before the collision). Thus we have the
following result:

(24) L= (N -1)o? /ge . /S PO (zy, 6,1 + o, &,1)|(€2 — &) - n|dEadn.

The calculation of the gain term G is exactly the same as the one for L,
except that we are looking at particles that have velocities &; and &, after
collision, and hence we have to integrate over the hemisphere S, defined
by V2- > 0 (the particles are moving away one from the other after the
collision). Thus we have:

(2.5) G=(N-1)0? /R /s PO (zy,61,31 + 0n, &, 1)| (&2 — &) - nldéadn.

We thus could write the right-hand side of Eq. (2.2) as a single expression:
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(2.6) G—L = (N-1)0? /QR3 /32 PO(zy,&), 14 0n, £, 1) (€2~ &1) -ndéadn

where now 52 is the entire unit sphere and we have abolished the bars of
absolute value in the right-hand side.

Although our derivation of Egs. (2.4) to (2.6) has been a little cavalier,
the results can (and will) be justified with full rigor.

Eq. (2.6), although absolutely correct, is not very useful in this form.
It turns out that it is much more convenient to keep the gain and loss
terms separated. Only in this way, in fact, can we insert in Eq. (2.2) the
information that the probability density P(®) is continuous at a collision,
(Eq. 1.14). This, in turn, as we shall see, will permit us to use the essen-
tial circumstance that particles that are about to collide are statistically
independent, while those that have just collided are not. In order to use
Eq. (1.14), we remark that if we write for i = 1, j = 2 and integrate with
respect to the positions and velocities of the remaining N — 2 particles, we
have:

(27) P(2)(.’L’1,£1,.’L‘2,€2,t) = P(z)(:zly&l - n(n . V),$2,§2 + n(n . V),t)

if |z — z2] = o where we have written V for Vi = & — £ and n for
—ny2 (in agreement with the notation used earlier). In order to shorten, we
write [in agreement with Eq. (1.6)]:

(2.8) & =& —n(n-V) & =&+nn-V).

Inserting Eq. (2.8) in Eq. (2.5) we thus obtain:

9 6= -1 [ [ PO g1+ om0l - &) nldéadn

which is a frequently used form. Sometimes n is changed into —n in order
to have the same integration range as in L; the only change (in addition to
the change in the range) is in the third argument of P(?), which becomes
] —on.

At this point we are ready to understand Boltzmann’s argument. In a
rarefied gas IV is a very large number and o (expressed in common units,
such as centimeters) is very small; to fix the ideas, let us say that we
have a box whose volume is 1 cm® at room temperature and atmospheric
pressure.Then N 2= 10%° gnd o = 10~8cm. Then (N — 1)o? = No? =
10* cm? = 1 m? is a sizable quantity, while we can neglect the difference
between z; and x; + on. This means that the equation to be written can
be rigorously valid only in the so-called Boltzmann—Grad limit, when N —
00, 0 — 0 with No? finite.



2.2 Boltzmann’s Argument in a Modern Perspective 23

In addition, since the volume occupied by the particles is about
No? 2 10~%cm3, the collisions between two preselected particles is a rather
rare event. Thus two spheres that happen to collide can be thought of as
two randomly chosen particles, and it makes sense to assume that the prob-
ability density of finding the first molecule at z; with velocity £; and the
second at zo with velocity &5 is the product of the probability density of
finding the first molecule at x; with velocity £; times the probability den-
sity of finding the second molecule at xz, with velocity &». If we accept this
we can write (assumption of molecular chaos):

(2.10) PO (21,61, 29,6, t) = PO (21,6,,8) PV (4,6, 1)

for two particles that are about to collide, or:

(211) P3O (zy,&,21 + on,&o,t) = PU (2, &, )P (21 + on, &, 1)

for (&2 —¢&1)-n<0.

Thus we can apply this recipe to the loss term (2.2) but not to the gain
term in the form (2.3). It is possible, however, to apply Eq. (2.11) (with
£1,&, in place of £;,&;) to the form (2.9) of the gain term, because the
transformation (2.8) maps the hemisphere S* onto the hemisphere S™.

If we accept all the simplifying assumptions made by Boltzmann, we
obtain the following form for the gain and loss terms:

(2.12) G = No? /.sna/s PO (21, &, t)PD (21,8, 1)|(62 — &) - n|dadn,

(2.13) L = No? /m 3 /S PO (a1, &1,6)PD (21,65,) | (62 — &) - | déadn.

By inserting these expressions in Eq. (2.2) we can write the Boltzmann
equation in the following form:

opW opW
5 +& - oz,
= N02/3/ [P(l)($17§£7t)P(l)(zhgé’t) —‘P(l)('Tl?El)t)P(l)(ml)g%t)]
R JS_

| (€2 — &1) - n | dézdn.

The Boltzmann equation is an evolution equation for P(V) without any
reference to P(?) or P. This is its main advantage. It has been obtained,
however, at the price of several assumptions; the chaos assumption present

(2.14)
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in Egs. (2.10) and (2.11) is particularly strong and will be discussed in the
next section.

Problem

1. Check that the transformation (2.8) actually maps the hemisphere S,
onto S_.

2.3 Molecular Chaos. Critique and Justification

The molecular chaos, assumed in Egs. (2.10) to (2.11), is clearly a property
of randomness. Intuitively, one feels that collisions exert a randomizing
influence, but it would be completely wrong to argue that the statistical
independence described by Eq. (2.10) is a consequence of the dynamics. It
is quite clear that we cannot expect every choice of the initial value for P to
give a P(1) that agrees with the solution of the Boltzmann equation in the
Boltzmann-Grad limit. In other words, molecular chaos must be present
initially and we can only ask whether it is preserved by the time evolution
of the system of hard spheres.

It is evident that the chaos property (2.10), if initially present, is almost
immediately destroyed if we insist that it should be valid everywhere. In
fact, if it were strictly valid everywhere, the gain and loss terms in the
Boltzmann-Grad limit would be exactly equal and there would be no effect
of the collisions on the time evolution of P(). The essential point is that
we need the chaos property only for particles that are about to collide, i.e.
in the precise form stated in Eq. (2.11). It is clear, then, that even if P(1),
as predicted by the Liouville equation, converges nicely to a solution of
the Boltzmann equation, P(?) may converge to a product, as stated in Eq.
(2.11), only in a way that is, in a certain sense, very singular. In fact, it is
not enough to show that the convergence is almost everywhere, because we
need to use the chaos property in a zero measure set. On the other hand we
cannot try to show convergence everywhere, because this would be false; in
fact, we have just remarked that Eq. (2.11) is simply not true for molecules
that have just collided.

How can we approach the question of justifying the Boltzmann equa-
tion without invoking the molecular chaos assumption as an a priori hy-
pothesis? Obviously, since P(?) appears in the evolution equation for P(),
we must investigate the time evolution for P(®; now, as is clear and as
will be illustrated in the next section, the evolution equation for P(® con-
tains another function, P®), which depends on time and the coordinates
of three particles and gives the probability density of finding, at time t,
the first molecule at x; with velocity &;, the second at z, with velocity &2,
and the third at z3 with velocity £3. In general if we introduce a function



2.3 Molecular Chaos. Critique and Justification 25

P = PO (), x9...,25,61,€2...,&, 1), the so-called s-particle distribu-
tion function, which gives the probability density of finding, at time ¢, the
first molecule at z; with velocity &;, the second at x5 with velocity &2, .. .,
and the sth at z, with velocity &,, we find the evolution equation of P(%)
contains the next function P(**Y until we reach s = N; in fact PV) is
nothing other than P, and it satisfies the Liouville equation. It is thus clear
that we cannot proceed unless we handle all the P(*) at the same time and
attempt to prove a generalized form of molecular chaos, i.e.

8

(31) P(s)($1,€1,,.’£2,§2, .. -,$3,§3,t) = HP(I)(wsvgsat)

j=1

The task then becomes to show that if true at ¢ = 0, this property re-
mains preserved (for any fixed s) in the Boltzmann-Grad limit. This will
be discussed in more detail in the next few sections.

There remains the problem of justifying the initial chaos assumption,
according to which Eq. (3.1) is satisfied at ¢ = 0. One can give two justifi-
cations, one of them being physical in nature and the second mathematical;
essentially, they say the same thing, i.e., that it is hard to prepare an initial
state for which Eq. (3.1) does not hold. The physical reason for this is that,
in general, we cannot handle the single molecules but rather act on the gas
as a whole at a macroscopic level, usually starting from an equilibrium state
(for which Eq. (3.1) holds). The mathematical argument indicates that if
we choose the initial data for the molecules at random there is an over-
whelming probability!® that Eq. (3.1) is satisfied for ¢ = 0 (see Problem
1).

A word should be said about boundary conditions. When proving that
chaos is preserved in the limit, it is absolutely necessary to have a boundary
condition compatible (at least in the limit) with Eq. (3.1). If the boundary
conditions are those of periodicity or specular reflection, no problems arise.
In general, it is sufficient that the particles are scattered without losses
from the boundary in a way that does not depend on the state of the other
particles of the gas'.

Problems

1. Give a reasonable definition of probability for the initial data in terms
of P and show that it attains a constrained maximum (the constraint
being that P(1) is assigned) when P = PW) is chaotic, i.e. it satisfies
Eq. (3.1) (with s = N and t = 0). (see Ref. 1).

2. What happens if in the previous problem we add the constraint that
P is zero outside 2V x R3N?
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2.4 The BBGKY Hierarchy

In this section we shall deal with the equations satisfied by the s-particle
distribution functions P(*) as a consequence of the Liouville equation (1.11),
which we rewrite here for the convenience of the reader:

0P . OP
(4.1) —5t—+;§1- 50; = ° (z € A).
A rigorous derivation of these equations involves some subtleties, which
will be discussed in Chapter 4. Here we shall assume that P is a smooth
function, so that all the steps to be performed are justified.
We first state the relation between P(®) and P, which follows from
their definition and is similar to Eq. (2.1):

(42) P(s)(w17£11x2)£27-"7$s§sat)

N
:/ P($1,£1,.’L’2,£2,-..,$N,§N,t) H dx]déj
120 xR3 j=s+1
The first step to be performed in order to derive an evolution equation
for P(® is now rather obvious: we integrate Eq. (4.1) with respect to the
variables z; (s +1 < j < N) over £2° x 32 It is convenient to keep the
terms in the sum appearing in Eq. (4.1) with ¢ < s from those with ¢ >s.

(43)
(s) N
L /Za O 11 dujae; + Z fgk 1‘[ da;d; = 0
_1 =s8+1 k=s+1 ] =s+1

where integration with respect to the velocity variables extends to the entire
R3N-3s while it extends to 2V ~* deprived of the spheres |z; —z;| < o (i =

., N,i # j) with respect to the position variables. It is also expedient
to call k the dummy suffix in the second sum rather than 1.

A typical term in the first sum in Eq. (4.3) contains the integral of a
derivative with respect to a variable, z;, over which one does not integrate;
it is not possible, however, to simply change the order of integration and
differentiation to obtain a derivative of P(*), even if the function P is as-
sumed to be smooth, because the domain has boundaries (|z; — z;| = o)
depending upon z;. To obtain the correct result, a boundary term has to
be added:

N

3P BP 8)
44 /51 H dx d&] Ez Z / (s+1)§1’ nzkdO'zkdgk

J s+1 k=s+1
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where n;;, is the outer normal to the sphere | z; — ) |= o (with center at
xx), doi the surface element on the same sphere, and P(+1) the (s + 1)-
particle distribution function with arguments (z;,¢;) (j = 1,2,...,8,k)
(see Problem 1).

A typical term in the second sum in Eq. (4.3) can be immediately
integrated by means of the Gauss theorem, since it involves the integration
of a derivative taken with respect to one of the integration variables. We
find:

N

(4.5) / £k - g—i [T dzjde;

Jj=s+1

o= Z/P(s+1)€k'nikd0ikd€k
i=1

N
+ Y [PV nudoudeudoidss + [ POg nidSidey
i=s+1
ik
where dS; is the surface element of the boundary of 2 in the three-
dimensional subspace described by zj, and ny is the unit vector normal
to such a surface element and pointing into the gas. The last term in Eq.
(4.5) is the contribution from the solid boundary of {2; if the boundary con-
ditions are of the form described at the end of the last section (in particular
if there are specular reflection or periodicity boundary conditions) the term
under consideration is zero; henceforth it will be omitted.
Inserting Egs. (4.4) and (4.5) into Eq. (4.3) we find:

oP® & oP® S X
(4.6) -t Zfi "oz, Z Z /P(8+1)‘/ik ‘nikdoikdér
i=1 t i=1 k=s+1

N
1
+o ) / PEIV,; - npdodird;dés
2
i=s+1
itk
where V;, = £; — & is the relative velocity of the ith particle with respect to
the kth particle and we have taken into account that £ -n;x can be replaced
by %Vki - n;k in the second sum, because n;, = —ng;. The last integral is
now easily seen to be zero. In fact, the integral over the sphere described by
n;k can be split into two parts; one refers to the hemisphere Vi; - nj, > 0,
the other to the hemisphere Vi; - nj < 0. Now Eq. (1.15) implies:

(47) P(s)($1,£1,. . -wi,g‘i, . ":L'jygj)- . 1$8’§s7t)

= PO (21, &1, .., iy & — i (Mg Vig)y -« - 24, &+ 145 (i - Vig)y - ., Ty Esy B)
if |lzi—2z;l=0 (,j=12,...,8 i#j s=12,...,N).
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Thus in the last integral of Eq. (4.6) any point of one hemisphere is mapped
by a measure preserving transformation of the type shown in Eq. (2.8) into
a point of the other hemisphere where P(**2) takes the same value (Eq.
(4.7) with s+2 in place of s). Since the factor Vi; - ny takes opposite values
at these two points, the integral under consideration vanishes. Further, the
first integral in Eq. (4.6) is the same no matter what the value of the dummy
index k is; thus we can abolish this index and write z., £, in place of zx, &.
Summarizing, we have:

P Z oP
Zi'—

(2 d
- s+, . n.dos
(4.8) i (N —s) i§=1/P V; - nydo;dé.

i=1

where V; = & — &,n; = (x; — z.)/0 and the arguments of P(**1) are
($17€1’ s 7$s,£S)z*7£*vt)'

It should be clear that the streaming operator in the left-hand side
of Eq. (4.8) should be complemented with the boundary conditions on the
boundary of A°. This operator is the generator of the free motion of s
particles. The physical meaning of Eq. (4.8) should be transparent: the
s-particle distribution function evolves in time according to the s-particle
dynamics, corrected by the effect of the interaction with the remaining
(N — 3) particles. The effect of this interaction is described by the right-
hand side of Eq. (4.8).

We remark that for s = 2 Eq. (4.8) reduces to Eq. (2.1) when the
right-hand side G — L is written in the form (2.5). That expression is thus
rigorously justified for functions P that are smooth enough. However, as
we remarked in Section 2, the form (2.5) is not the most convenient for
the right-hand side of Eq. (2.1). It is better to keep the contributions from
the two hemispheres +V -n > 0 separate. For the same reason, here we
separate in Eq. (4.8) the contributions from the two hemispheres S,* and
S_%, defined by V;-n; > 0 and V; - n; < 0, respectively. In addition, we
remark that do; = o%dn;(where dn; is the surface element on the unit
sphere described by n;) and write:

opPe) op(s) 9
(4.9) 5 T ;& o (N = s)o
> </ P(”“)Iwnildnid{**/ / P““)IVi-mldnid&)
= \Uns Js,i R J gt

Now, as we did in Section 2 for the particular case where s = 2, we use
the laws of elastic impact and the continuity of the distribution functions
embodied in Eq. (4.7) (with s + 1 in place of s) to obtain

P® Z ~ap®)

(4.10) 5 .

=(N - 3)02

t=1
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Z(/ / P(3+1)’M~ni]dnid£*—/ / P(s“)]‘/}-ni]dnid{*)
: R3JS, R3JS_

i=1

where P**+1) means that in P(*1) we replace the arguments &; and £, with
& and &, given by:

(4.11) L= —ni(ni- Vi) &L=+ ni(n; - V).

We may transform the two integrals extended to S_ii_ and S* into a single
integral by changing, e.g., n; into —n; in the second integral; we may even
abolish the index % in n;, provided the argument z, in the second integral
of the ith term is replaced by

(4.12) Ty =T; —NO
(z« is replaced by z; + no in the first integral, of course). Thus we have:

P i apP)

(4.13) 5 B,

i=1

= -0y [ [ P Wn = PO, nl)dnas..
i=1 IR JS?

This system of equations is usually called the BBGKY hierarchy for a hard
sphere gas.

Problems

1. Show that Eq. (4.4) holds.

2. Show that the last integral in Eq. (4.4) is zero if the boundary condi-
tions are such that the change of state of a particle at the boundary is
independent of the state of the other particles (see Ref. 2).

2.5 The Boltzmann Hierarchy and Its Relation to the
Boltzmann Equation

Let us consider the Boltzmann-Grad limit (N — oo and ¢ — 0 in such
a way that No? remains finite). Then we obtain (for each fixed s) that if
each P() tends to a limit (which we denote by the same symbol) and this
limit is sufficiently smooth, the finite hierarchy of Egs. (4.13) becomes in
the limit:
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(5.1)

OP® O 9p® : A
5 T &g =No* ) /ﬁ /s (Pe+D’ — POFD) |V - njdnde,
K i=1 +

1=

where the arguments of P(st1)" and P(**+1) are the same as above, except
that z/, = z. = z; in agreement with Eq. (4.12) for 0 — 0. Egs. (5.1) give
a complete description of the time evolution of a Boltzmann gas (i.e. the
ideal gas obtained in the Boltzmann-Grad limit), provided the initial value
problem is well posed for this infinite system of equations, which appears
to have been first written in Ref. 3 and is usually called the Boltzmann
hierarchy.

As we already know, Eq. (5.1) is not equivalent to the Boltzmann
equation, unless a special assumption on the initial data is made. Indeed,
as discussed by Spohn?, the solutions of the Boltzmann hierarchy describe
the evolution of a Boltzmann gas, when the chaos assumption given by
Eq. (3.1) is not satisfied by the initial data at ¢ = 0. The solutions of the
Boltzmann hierarchy in the case when the factorization property is not
fulfilled for ¢ = 0 will be given in Section 7 of Chapter 4. Here we shall
assume that the data satisfy Eq. (3.1), which we rewrite here for ¢t = 0:

3

(52) P(s)(wl,§1,$2,£2, e ,-733,5.9,0) = H P(l)(szm 0)

j=1

It is now a simple remark, made in Ref. 3, that if Eq. (5.2) is satisfied and
the Boltzmann equation, given by Eq. (2.14) or, shortly, (V = ¢ — £,) by:

69 ) .
(5.3) oP +¢- 0P _ No? / (PW PV _ pO PNV . n|dg,dn
at 6£E R3JS,

admits a solution PM)(x,,&,,t) for given initial data P (x,,&,,0), then
the Boltzmann hierarchy Eq. (5.1) has at least a solution, given by

(5'4) P(s)(mlv£1,$2’§2a-~-,ws,€svt) = HP(I)(xS,ﬁs,t).

j=1

Therefore the chaos assumption, Eq. (5.4), is not inconsistent with the
dynamics of rigid spheres in the Boltzmann-Grad limit; actually, if the
Boltzmann hierarchy has a unique solution for data that satisfy Eq. (5.2),
then Eq. (5.4) necessarily holds at any time if it holds at ¢ = 0. Then the
Boltzmann equation is justified.

We stress, however, the fact that we made several assumptions (exis-
tence of limits, their smoothness, an existence theorem for the Boltzmann
equation, a uniqueness theorem for the Boltzmann hierarchy) that might
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not be satisfied. A few cases in which these properties have been shown to
hold and thus the Boltzmann equation has been shown to be valid, will be
discussed later (see Chapter 4).

We end this chapter with a few remarks on the Boltzmann equation,
Eq. (5.3). First, we can omit the superscript (1), which is no longer needed,
and we rewrite Eq. (5.3) as follows

(5.5) %1:+§ ———N / / (P'P. — PP,)|V - n|d¢.dn.
R3JS,

Then it should be clear that the arguments of P are x, &, f,those of P, z, &, ¢,
those of P’ z,£',t and those of P, z,£,,t, where

(5.6) '=¢-n(n-V) E=Ltnn V), V=£(-¢.

Finally we observe that the integral in Eq. (5.5) is extended to the hemi-
sphere S, but could be equivalently extended to the entire sphere S? pro-
vided a factor 1/2 is inserted in front of the integral itself. In fact changing
n into —n does not change the integrand.

The considerations of this and the previous sections could be extended
to the case when an external force per unit mass X acts on the molecules;
the only difference would be to add a term X - 9P/9¢ in the left-hand side
of Eq. (5.5). Since we shall usually consider cases when the external action
on the gas, if any, is exerted through solid boundaries (surface forces), we
shall not usually write the abovementioned term; it should be kept in mind,
however, that such simplification implies neglecting, inter alia, gravity.

Extensions of the Boltzmann equation to molecular models different
from the hard spheres are possible. This line started with Boltzmann him-
self, who, following previous calculations made by Maxwell, considered
molecules modeled as point masses that repel each other with a central
force. It is not hard to write a Boltzmann equation for this case (see Refs.
1-3) but, since the rigorous theory for these molecular models is in a very
preliminary stage, we shall not consider it any longer in this book.

We finally mention that it is possible to retain some of the effects of
the finite size of the molecules that disappear in the Boltzmann-Grad limit,
as shown by Enskog in 1921. The relation between the Enskog equation and
the Liouville equation is unclear from a rigorous standpoint. Once accepted,
however,the Enskog equation lends itself to interesting mathematical inves-
tigations.
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3

Elementary Properties of the
Solutions

3.1 Collision Invariants

In this chapter we shall devote ourselves to a study of the main properties
of the solutions of the Boltzmann equation. We assume that our solutions
are as smooth as required. It will be the purpose of the remaining part
of the book to show that sufficiently smooth solutions exist for which the
manipulations presented here make sense.

Before embarking in the study of the properties of the Boltzmann equa-
tion we remark that the unknown of the latter is not always chosen to be a
probability density as we have done so far; it may be multiplied by a suitable
factor and transformed into an (expected) number density or an (expected)
mass density (in phase space, of course). The only thing that changes is the
factor in front of Eq. (IL.5.5), which is no longer No?. In order to avoid
any commitment to a special choice of that factor we replace No? by a
constant a and the unknown P by another letter, f (which is also the most
commonly used letter to denote the one-particle distribution function, no
matter what its normalization is). In some physically interesting situations
in which the gas domain is the entire %3 and the total mass (or total num-
ber of particles) is only locally finite (i.e. [, pa f(x,&)dzdE < +00, for any
bounded A € R3) the distribution function cannot even be normalized (i.e.
Jge f(z,€)dzdE = 400). Let us then rewrite Eq. (I1.5.5) in the following
form:

ay  Feegheof [ a1V ndean
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The right-hand side contains a quadratic expression Q(f, f), given by:

(12) At n= [ [ (5= £V - nideudn

®s Js,
This expression is called the collision integral or simply the collision term,
and the quadratic operator ) goes under the name of collision operator. In
this section we study some elementary properties of Q. Actually it turns

out that it is more convenient to study the slightly more general bilinear
expression associated with Q(f, f), i.e.:

(1.3) Q(f,9) = -;—/%S/S (f'g +9'fr+ fgu — gf )V - n|dE.dn.

It is clear that when g = f, Eq. (1.3) reduces to Eq. (1.2) and

(1.4) Q(f,9) =Qlg, f)-
Our first aim is to study the eightfold integral:

(1.5)
1 't rel _ .
[ ousowee=5 [ [ [ (#a+dsi=foat @V nidsudn

where f and ¢ are functions such that the indicated integrals exist and the
order of integration does not matter. A simple interchange of the starred
and unstarred variables [with a glance to Eq. (I1.5.6)] shows that

(1.6 [ atase

1 ! el _ )
2 ./s.‘; /w fs+ (f'ge+9'fe = F9: = 9f)(&)|V - n|dEdE.dn.

Next, we consider another transformation of variables, the exchange of
primed and unprimed variables (which is possible because the transforma-
tion in Eq. (IL.5.6) is its own inverse). This gives

(17) JREDIEE:

1 VA7 ! . 1 g0t
= 5/8?3 /Rs /S+(f9*+9f* — f'9 = ' £V - n|dE'dE, dn.

(Actually since V'-n = —V -n, we should write S_ in place of S, ; changing
n into —n, however, gives exactly the expression written here.)
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The absolute value of the Jacobian from £, &, to €, £, is unity; thus we
can write d{d¢, in place of d¢'d¢, and Eq. (1.7) becomes:

(1.8)
1 PV ) ’ .
Jewas@as=g [ [ [ (orosrsi-g 10V nidedt.an

Finally we can interchange the starred and unstarred variables in Eq. (1.8)
to find:

(1.9) /m QU 98k

=5 [ [ [ Ga+ot.— £6.—d m)6EIWV - nldede.an
w3 Jws Js,
Eqgs.(1.6), (1.8), and (1.9) differ from Eq. (1.5) because the factor ¢(£) is
replaced by ¢(&.), —¢(€'), and —¢(£L) respectively. We can now obtain
more expressions for the integral in the left hand side by taking linear
combinations of the four different expressions available. Among them, the

most interesting one is the expression obtained by taking the sum of Egs.
(1.5), (1.6), (1.8), and (1.9) and dividing by four. The result is:

(1.10) [ @tasere

1 o I I _ o *I )
_5/%3/%3/3+(fg*+gf* f9x— 9f) (P + % — ¢’ — ¢+)|V - n|dEdE.dn.

This relation expresses a basic property of the collision term, which is fre-
quently used. In particular, when g = f, Eq. (1.10) reads

(1.11) /R QU Ng(e)e

1
= z/ / / (F'fL = FL)(@+ %~ ¢ — ¢V - nlddEudn.
w3 Jws Js,
We remark that the following form also holds:
(1.12)

[oeunede=5 [ [ [ 1.6 +6¢ -9 gV - nidede.an
R3 ®3 Jws Jg,

In fact, the integral in Eq. (1.11) can be split into the difference of two
integrals (one containing f’f, , the other ff.); the two integrals are just
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the opposite of each other, as an exchange between primed and unprimed
variables shows, and Eq. (1.12) holds.

We now observe that the integral in Eq. (1.10) is zero independent of
the particular functions f and g, if

(1.13) S+ ¢ =¢ + ¢,

is valid almost everywhere in velocity space. Since the integral appearing
in the left-hand side of Eq. (1.11) is the rate of change of the average value
of the function ¢ due to collisions, the functions satisfying Eq. (1.13) are
called “collision invariants.”

The first discussion of Eq. (1.13) is due to Boltzmann®7, who assumed
¢ to be differentiable twice and arrived at the result that the most general
solution of Eq. (1.13) is given by

(1.14) #(&)=A+B-£+ClE)2

After Boltzmann, the matter of finding the solutions of Eq. (1.13) was
investigated by Gronwall'4!® (who was the first to reduce the problem to
Cauchy’s functional equation for linear functions), Carleman®, and Grad!®.
All these authors assumed ¢ to be continuous and proved that it must be of
the form given in Eq. (1.14). Slightly different versions of Carleman’s proof
are given in Refs. 11 and 22. In the latter monograph?? the authors prove
that the solution is of the form (1.14), even if the function ¢ is assumed
to be measurable rather than continuous. In fact, they use a result on the
solutions of Cauchy’s equation:

(1.15) flut+v)=flw)+flv) (wveRrRy)

valid for measurable functions. When passing from continuous to (possibly)
discontinuous functions, however, one should insist on the fact that Eq.
(1.14) is satisfied almost everywhere and not everywhere in R3 x R3 x
52, as assumed in Ref. 22. It should be possible, although this was never
attempted, to transform the proof in Ref. 22 into a proof that the collision
invariants are the classical ones under the assumption that Eq. (1.14) holds
almost everywhere.

The problem of solving Eq. (1.13) was tackled by Cercignani'® with the
aim of proving that Eq. (1.14) gives the most general solution of Eq. (1.13),
when the latter is satisfied almost everywhere in 3 x %2 x S§2, under the
assumption that ¢ is in the Hilbert space H,, of the square integrable func-
tions with respect to a Maxwellian weight w(|¢|) = (8/7)%/? exp(—B|¢]?),
B > 0. The first step was to show that the linear manifold of the solutions
had a polynomial basis. After that it was enough to look for smooth so-
lutions. The existence of these can be made very simple if we look for C?
solutions.
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A completely different proof of the same result (under the assumption

that ¢ € Lll ) Was contained in a paper by Arkeryd?, but remained largely

ignored in the literature. As shown in a paper by Arkeryd and Cercignani®,

Arkeryd’s argument, when combined with the proof for C? functions of Ref.
10, allows a very simple proof of the fact that (1.14) is the most general
solution when ¢ € LllOC and Eq. (1.13) is satisfied almost everywhere.

Alternatively, it is possible to prove which the continuous solutions are,
in such a way that the case of Lio solutions follows by the continuous proof
“with a. e. added at suitable places.” We shall deal with Eq. (1.15) in the
set M = {u,v € R3;u - v = 0}, because solving this equation is equivalent
to solving Eq. (1.14) (see Problem 10).

In fact, the proof we shall now present can be directly used under the
weaker assumption that f is measurable and finite a. e. and that Eq. (1.15)
holds for a. e. (u,v) € M. Following Carleman® we split f into an even
part k(u) = f(u) + f(—u) and an odd part h(u) = f(u) — f(—u), which
separately satisfy Eq. (1.15). Carleman’s study of k is simple and holds
also in the measurable case “with a. e. added at suitable places.” As for h,
his construction uses in an essential way a set of measure zero, not easily
adaptable to the measurable case. Here we will use a different strategy,
which was recently proposed by Arkeryd and Cercignani®. Following the
latter paper, we shall prove the following.

(3.1.1) Theorem. If f : R — R is continuous and satisfies (1.15) for
(u,v) € M, then for some B € R3,C € R, it holds that

(1.16) fw=B-u+Clul?.

If f is measurable, finite a. e., and satisfies (1.11) for a. e. (u,v) € M,
then (1.16) holds for a. e. u € R3.

The proof in the continuous case uses Cauchy’s result (Problem 1) that
any continuous function x satisfying

(1.17) x(@)+xy) =x(z+y), z,y€RorRy)

is of the form x(z) = Bz for some 3 € R.
A generalization of this result® can be used to prove the proposition in
the measurable case.

(3.1.2) Lemma. If x is a measurable function from R (or Ry ), finite a. e.,
and satisfying (1.17) for a. e. (z,y) € R? (or R2.), then there is B € R
such that x(z) = Bz for a. e. x € R (or R,).

Proof. The idea is to show that x € Lfgc and then make a study of

fol x(zt)dt as in Arkeryd’s proof?. We first let the domain of x be R. Given
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an interval I = (—a/2,a/2), by Lusin’s theorem there is a continuous func-
tion F on R such that x(z) = F(z) for all z € I outside of a measurable
set of measure less than a/3. For some § > 0,| F(z + h) — F(z) |< 1
if | b |< bz € I. Take § < a/3 and notice that for each h with
| h|< §,x(z+h) = F(z + h) for all z € I outside of a measurable set
of measure less than a/3 + 6 < 2a/3.

Thus, given h with | h |< 6, there is a subset £2;, C I of a measure
larger than a/3 — 6 > 0, with | x(z) — x(z + h) |< 1 for = € £2;,. But for a.
a. (z,h) € I x (=6,9):

(1.18) x(z + k) — x(z) = x(h).

In particular for a. a. h € (—6,6) there is an zy € (2}, such that

(1.19) 1 >| x(zo+h)—x(zo) |=| x(h) |=| x{z+h)—x(z) | for a.e. z € L

Hence by Fubini’s theorem it holds for a. e. z € I that

(1.20) I x(x+h) — x(z) |< 1fora. a hwith |h|<é.

It follows that x € L>(I) and, since I is arbitrary, that x € Llloc' Thus for
z#0

(1.21) g(z) = /0 x(tz)dt = /Oz x(s)ds/z

is well defined and continuous. With g(0) = 0 it satisfies

(1.22) 9(z) + g(y) = g(z + y) for (z,y) € B2

We use now the elementary result (see Problem 1) that if g is continuous
and satisfies Eq. (1.22) then g(z) = (z; hence from Eq. (1.21), x(z) = 28z
a. e. O

We are now ready to prove Theorem 3.1.1.

Proof. For the even continuous solution k of (1.15) Carleman® noted that

(1.23) k(u) + k(v) = f(u£v) + f(~(u £ v)), (u,v) € M.

In particular for p1,p2 € R3 with | py |=| p2 |=r, and u = (p; +p2)/2,v =
(p1 — p2)/2, this gives:
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(1.24) k(p1) = k(u +v) = k(u — v) = k(p2).

So there is a function @ with k(p) = @(r?). Finally, we obtain

(1.25) O(1p ) +2(p2?) =2(Ipr > + [ p2 I°)

and by Cauchy’s result we get

(1.26) k(w) = 8(|u ) =2C |u %,

where we replaced 3 by 2C.

In the measurable case, starting from (1.15) for k and a. e. (u,v) € M,
we can argue in the same way and by the lemma conclude that (1.26) holds
for a. e. u € R3.

For the odd solution h of Eq. (1.15), in the continuous case we let
e1,e2,e3 be an arbitrary orthonormal basis in %3 and notice that (1.15)
holds for h and this basis. For (u,v) in M set u = 3 uje; and v = ) vje;.
By (1.15)

(1.27) > (hluje;) + h(uje;)) = h(D_uje;) + h(D_ vie;)

= h(w) + h(v) = h(u+v) = h(D_((u; +vj)e;)) = Y h((u; +vj)e;)-

And so:

(1.28)
3

h(uier)+h(vier) —h((u1+vy)er) = — Z(h(uiei)+h(viei)+h((ui+v,~)e,~)).
2

Since h is odd this gives

(129) h(u,-e,-) + h(viei) - h((u, + vi)e,-) =0 (’L = 1)

An analogous result holds for ¢ = 2,3. So by Cauchy’s result, for some
B; € R

(130) h(uie,-) - QB,'U.L‘
and with B = )" B;e;:
(1.31) h(u) = 2B - u.

By the discussion of Eq. (1.15), in the measurable case there is an orthonor-
mal basis ej, ez, e3 such that Eq. (1.31) holds for h and a. e. u € R2. Using
this basis, the discussion holds for a. e. (u,v) € M, in particular Eq. (1.13)



40 3. Elementary Properties of the Solutions

holds for almost everywhere v € ®3. Finally Eq. (1.16) follows (for a. e.

u € R3) by adding Egs. (1.26) and (1.31). O
Problems
1. Show that if z is a vector in an n-dimensional vector space E, and

f(z) a function continuous in at least one point and satisfying f(z) +
fly) = f(z +y) for any =,y € E,, then f(zr) = A-z, where A is a
constant vector. (Hint: show that f is actually continuous everywhere
and satisfies f(rz) = rf(z) for any integer r; extend this property to
any rational and then to any real r; then use a basis in FE,.)

Show that the even part of a function ¢ satisfying Eq. (1.13) is a
function of | £ |2 alone. (Hint: ¢ + ¢, is constant if and only if £ + &.
and| £ | + | &, | are constant, and £ + £, vanishes for &, = —¢.)
Show that the even part of a continuous function satisfying Eq. (1.13)
has the form a+c | £ |2, where a and c are constants. (Hint: let a = ¢(0)
and use the results of the two previous problems.)

Show that if £ and €, are orthogonal then the even part of a collision
invariant ¢ satisfies ¢(£) + P(£,) = (€ + &,).

Extend the result of the previous problem to a pair of vectors £ and &,,
not necessarily orthogonal. (Hint: consider another vector p orthogonal
to both of them with magnitude | £ - £, |}/ and consider the vectors
&+ p, & £ p, to which the result of the previous problem applies.)
Apply the results of Problems 1 and 5 to show that the odd part of a
collision invariant, if continuous in &, must have the form b - £ where
b is a constant vector, so that, because of the result of Problem 3 a
collision invariant must have the form shown in Eq. (1.14).

Extend the results of the previous problems to measurable functions
using the fact that the result of Problem 1 is valid if f is assumed to
be measurable as discussed in the main text (see also Ref. 3).

Extend the result of Problem 6 to the case of a function ¢ in H,,, the
Hilbert space of functions, which are square integrable with respect to
the Maxwellian weight w(|¢|) = (8/7)3/% exp(—B|¢|2), B > 0, when Eq.
(1.13) is satisfied almost everywhere. (Hint: define the operator K in
the following way: Ko = & [, 52 w([E)(®(&) + B(E) — $(E.))dndt.
and show that K is a bounded self-adjoint operator in H,,. Then prove
that K transforms polynomials of the mth degree into polynomials of
degree not larger than m. Then, noting that v is a collision invariant
iff it is an eigenfunction of K corresponding to the unit eigenvalue,
prove that the collision invariants are polynomials in €. Then apply
the result of Problem 8; see Ref. 10.)

Show that Eq. (1.13) can be written as follows

P(€ +u+v) + d(§) = d(€ +u) + (€ +v)

provided u and v are two vectors such that
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11.

12.

13.

14.

15.
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u-v=0.
Show that in order to solve Eq. (1.13) it is enough to solve

flutv)=fw) +flv) (u-v=0).

(Hint: set f(u) = ¢¥(£ +u) — 9¥(£) in the equation of Problem 9.)
Introduce an orthonormal basis e;(i = 1,2,3) in ®* and write u =
Y, uies, so that if f satisfies f(u+v) = f(u) + f(v) (u-v=0), then
f(u) =3, f(uie;) if f is continuous. Show that if f is measurable and
the mentioned equation holds a. e. u,v € M = {u,v € R}u-v =
0}, then we can pick an orthonormal basis e;,eg,e3 so that f(u) =
3o fuse;) for a. e. u =Y uje; € R (see Ref. 3).

If f € Lj,. satisfies f(u+v) = f(u) + f(v)(u-v = 0) show that
f(tu), (¢ €[0,1]) is L] in ¢ for a. a. u € R* and if we define g(u) =

fol f(tu)dt, g turns out to be C° and satisfies

glu+v)=g(u)+g(v) (uv-v=0)

(Hint: by means of an orthonormal basis e;(i = 1,2,3) in R3, write
u =), ue;, so that f(u) =3, f(use;). Next show that

Ul U2 us
/ dvy / / dvodus f(v)
0 0 0

exists and equals ujugusg(w). Then everything is easily proved for
u,v # 0. The latter restriction can also be eliminated; see Refs. 2
and 3.)

Prove that if f is continuous, n — 1 times differentiable (n > 1), and
satisfies f(u+v) = f(u)+ f(v)(u-v = 0), then g = fol ftu)dt is n times
differentiable and u - gﬁ +g=f. (Hint proceeding as in the previous
problem, first prove that g(u) = 3, - o f dv; f(vse;) for u; # 0; then
see Ref. 3.)

Let f be a measurable solution of f(u + v) = f(u) + f(v)(u-v = 0.
Prove that ¢ = f is a solution of Eq. (1.13) even if the equations are
satisfied a. e. in M = {u,v € R3%;u-v = 0} and in R x N3 x §2
respectively. (Hint: let u,v, and ¢ be three vectors with « - v = 0 and
decompose t as t = t,, + t, + t,, where t,and t, are directed as u and
v, respectively, while ¢, is orthogonal to both; see Ref. 3.)

Prove that if f satisfies f(u +v) = f(u) + f(v) (u-v =0), in a. e.
sense, then if v and v are generic vectors (with « - v # 0, in general),
f(u)+ f(v) is a function of u+v and | u |? + | v |2 in a. e. sense. (Hint:
use the previous lemma to prove that f(¢)+ f(w) = f(t+u)+ f(w—u)
provided that ¢ and w are arbitrary vectors and u such that | t+u |2 + |
w—1u |?=|t|? + | w |%. Then remark that t' = ¢t + u,w’ = w — u with
u satisfying the latter constraint is the most general transformation
leaving both ¢t +w and | ¢ |> + | w |2 invariant; see Ref. 3.)
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16. Prove that if f € C?, then the most general solution of f(u + v) =
f(u)+ f(v) (u-v = 0) is given by f(u) = B-u+C | u |? . (Hint:
according to the previous problem, we have f(u) + f(v) = F(z,y),
where z = u+ v;y = 3(| u |? + | v |?); differentiate this relation with
respect to u and subtract from the result the analogous derivative
with respect to v; eliminate the derivatives of F' to obtain a relation
between the derivatives of f; then differentiate with respect to a generic
component of u; a further differentiation with respect to a generic
component of v gives relations that straightforwardly imply the result;
see Refs. 3 and 10.)

17. By means of the results proved in the previous problems (in particular
Problems 13 and 16) prove that if f : R — R is in L}, and satisfies
f(u+v) = f(u)+ f(v) (u-v = 0), then for some B € R3,C € R, f(u) =
B-u+C | u|?. (Hint: use the fact that the set of functions having
this shape is invariant with respect to the transformation from f to g
and its inverse, defined in Problem 13; see Ref. 3.)

3.2 The Boltzmann Inequality and the
Maxwell Distributions

In this section we investigate the existence of positive functions f that give
a vanishing collision integral:

(2.1) QU f) = /R 3 /S (F'f. ~ F1IV - nldéadn = 0.

In order to solve this equation, we prove a preliminary result that plays
an important role in the theory of the Boltzmann equation: if f is a non-
negative function such that log fQ(f, f) is integrable and the manipulations
of the previous section hold when ¢ = log f, then the Boltzmann inequality:

(22) | Joera(s. e <0

holds; further, the equality sign applies if and only if log f is a collision
invariant, or equivalently:

(2.3) f=expla+b-E+c|E)).

To prove Eq. (2.2) it is enough to use Eq. (1.11) with ¢ = log f:
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(2.4)
1 ! p! ! pt
[ esraus nag =g [ [ [ 1oss5/8 £ 5= 5 - nidguan

and Eq. (2.2) follows thanks to the elementary inequality

(2.5) (z—y)log(y/z) <0 (y,z € R™).

Eq. (2.5) becomes an equality if and only if y = z; thus the equality
sign holds in Eq. (2.2) if and only if:

(2.6) ff="ff

applies almost everywhere. But taking the logarithms of both sides of Eq.
(2.6), we find that ¢ = log f satisfies Eq. (1.13) and is thus given by Eq.
(1.14). f = exp(¢) is then given by Eq. (2.3).

We remark that in the latter equation ¢ must be negative, since f €
L'(R3). If we let ¢ = —3,b = 2Bv (where v is another constant vector), Eq.
(2.3) can be rewritten as follows:

2.7) f=Aexp(-B|E~v[?)

where A is a positive constant related to a,c,| b | (3,v, A constitute a
new set of constants). The function appearing in Eq. (2.7) is the so—called
Maxwell distribution or Maxwellian. Frequently one considers Maxwellians
with v = 0 (nondrifting Maxwellians), which can be obtained from drifting
Maxwellians by a change of the origin in velocity space.

Let us return now to the problem of solving Eq. (2.1). Multiplying both
sides by log f gives Eq. (2.2) with the equality sign. This implies that f is a
Maxwellian, by the result just shown. Suppose now that f is a Maxwellian;
then f = exp(¢) where ¢ is a collision invariant and Eq. (2.6) holds; then
Eq.(2.1) also holds. Thus there are functions that satisfy Eq. (2.1), and
they are all Maxwellians, Eq. (2.7).

Problem
1. Prove (2.5).

3.3 The Macroscopic Balance Equations

In this section we compare the microscopic description supplied by kinetic
theory with the macroscopic description supplied by continuum gas dynam-
ics. For definiteness, in this section f will be assumed to be an expected
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mass density in phase space. In order to obtain a density, p = p(z,t), in
ordinary space, we must integrate f with respect to &:

(3.1) p= /&e B3

The bulk velocity v of the gas (e.g., the velocity of a wind) is the average
of the molecular velocities £ at a certain point z and time instant t; since
f is proportional to the probability for a molecule to have a given velocity,
v is given by

(32 v=([ eray [ rae

(the denominator is required even if f is taken to be a probability density in
phase space, because we are considering a conditional probability, referring
to the position z). Eq. (3.2) can also be written as follows:

(3.3) pv= /R efa

or, using components:

(34) o= [ e (=129,

The bulk velocity v is what we can directly perceive of the molecular motion
by means of macroscopic observations; it is zero for a gas in equilibrium in a
box at rest. Each molecule has its own velocity £, which can be decomposed
into the sum of v and another velocity

(3.5) c=€-v

called the random or peculiar velocity; c is clearly due to the deviations of
& from v. It is clear that the average of ¢ is zero (Problem 1).

The quantity pv; that appears in Eq. (3.4) is the ith component of
the mass flow or of the momentum density of the gas. Other quantities of
similar nature are: the momentum flow

(36) my = [ 6&de =123

the energy density per unit volume:

(3.7 w=g [ 6P rde
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and the energy flow:

1
(3.8) T = 5/9}3 &l€[> fde.

Eq. (3.8) shows that the momentum flow is described by the components
of a symmetric tensor of second order, because we need to describe the
flow in the ith direction of the momentum in the jth direction. It is to be
expected that in a macroscopic description only a part of this tensor will
be identified as a bulk momentum flow, because in general, m;; will be
different from zero even in the absence of a macroscopic motion (v = 0). It
is thus convenient to reexpress m;; in terms of ¢ and v. Then we have:

(3.9) mij = pUiv; + Pij

where:

(3.10) P = / cieifdE (i, =1,2,3)
%3

plays the role of stress tensor (because the microscopic momentum flow
associated with it is equivalent to forces distributed on the boundary of
any region of gas, according to the macroscopic description).

Similarly, one has:

1
(3.11) w = 5plvf* + pe,

where e is the internal energy per unit mass (associated with random mo-
tions) defined by:

(3.12) pe = %/W |c|? fd¢;

and

3
1 .
(3.13) ri = pui(5 o +e) + Nupi+a (6=1,2,3),
=1

where ¢; are the components of the so-called heat-flow vector:

(3.14) ¢ = %/W ci|el? fde.

The decomposition in Eq. (3.13) shows that the microscopic energy flow is
a sum of a macroscopic flow of energy (both kinetic and internal), of the
work (per unit area and unit time) done by stresses, and of the heat flow.
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In order to complete the connection, as a simple mathematical conse-
quence of the Boltzmann equation, one can derive five differential relations
satisfied by the macroscopic quantities introduced above; these relations
describe the balance of mass, momentum, and energy and have the same
form as in continuum mechanics. To this end let us consider the Boltzmann
equation

of L ..0f
ot oz
If we multiply both sides by one of the elementary collision invariants 1),

(v = 0,1,2,3,4) defined in Section 1 and integrate with respect to £, we
have, thanks to Eq.(1.15) with g = f and ¢ = ¢,

(3.15)

(3.16) [ e nae=o

and hence, if it is permitted to change the order by which we differentiate
with respect to ¢ and integrate with respect to £:

3
61 2 [wrierY o [entie=0  =01234)
i=1 "

If we take successively v = 0,1,2,3,4 and use the definitions introduced
above, we obtain

Op < 0 3
(3.18) %t ; 70, (v =0,
8 ;] .
(3.19) &(ij) +y 5;1,(/”%”]‘ +pi;) =0, (j=12,3)
i=1

8 1 >, 8 1 3
(320) - Golv P +pe)+ ) s—loui(5 Il + )+ vipy + ] = 0.
i=1 j=1

These equations have the so-called conservation form because they express
the circumstance that a certain quantity (whose density appears differen-
tiated with respect to time) is created or destroyed in a certain region {2
because something is flowing through the boundary 92. In fact, when in-
tegrating both sides of the equations with respect to = over {2, the terms
differentiated with respect to & can be replaced by surface integrals over
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012, thanks to the divergence theorem. If these surface integrals turn out
to be zero then we obtain that the total mass,

(3.21) M:/ pdz,
?

the total momentum,

(3.22) Q:/Qp'udx,

and the total energy,

(3.23) E= /9 (%p | v |? +pe)da,

are conserved in {2. Typical cases when this occurs are: a) §2 is ®2 and
suitable conditions at infinity ensure that the fluxes of the mass, momentum
and energy flow vectors through a large sphere vanish when the radius of
the sphere tends to infinity; b) 2 is a box with periodicity conditions (flat
torus), because essentially there are no boundaries. When {2 is a compact
domain with the condition of specular reflection on {2 then the boundary
terms on 942 disappear in the mass and energy equations but not in the
momentum equation; thus only M and E are conserved.

We also remark that in the so-called space-homogeneous case, the var-
ious quantities do not depend on z; all the space derivatives then disappear
from Eqgs. (3.18-3.20) and the densities p, pv, and p | v |2 +pe are con-
served, i.e. do not change with time.

The considerations of this section apply to all solutions of the Boltz-
mann equation. The definitions, however, can be applied to any positive
function for which they make sense. In particular if we take f to be a
Maxwellian in the form (2.7), we find that the constant vector v appearing
there is actually the bulk velocity as defined in Eq. (3.2) while 8 and A are
related to the internal energy e and the density p in the following way:

(3.24) B=3/(4e), A= p(4me/3)"%/2.

the heat-flow vector is zero.

We end this section with the definition of pressure p in terms of f;p
is nothing other than 1/3 of the spur or trace (i.e. the sum of the three
diagonal terms) of p;; and is thus given by:
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(3.25) p= l/ | c|? fde.
3 Jgs

If we compare this with the definition of the specific internal energy e, given
in Eq. (3.12), we obtain the relation:

(3.26) p= 2 pe.

3
This is the state equation that was already obtained in Chapter 1 through
an elementary argument. In the case of a Maxwellian distribution, as we
have seen, the stress tensor is diagonal; the common value of the three
nonzero components coincides with the pressure.

It is not worthless to mention, at this point, that Egs. (3.18-3.20) are
not fluid-dynamic equations. Actually they cannot even be solved without
first solving the Boltzmann equation to determine p;; and g;. There are
situations, however, where the distribution function can be shown to be
very close to a Maxwellian so that ¢; and the anisotropic part of p;; are
negligible, and, by taking

(3.27) ¢; =0, Pij = pbij,

we can describe the gas by means of the Euler equations. How to pass from
the kinetic regime (described by the Boltzmann equation) to the hydro-
dynamic regime (described by the Euler equations) will be described in
Section 8, and some rigorous results regarding this transition are given in
Chapter 11.

Problems

1. Prove that fw, cfdé = 0, where ¢ is the random velocity given by Eq.

(3.5).

Prove Eq. (3.9).

Prove Eq. (3.11).

Prove Eq. (3.12).

Check Egs. (3.18)—(3.20).

Check that the flows of mass and energy vanish at a boundary where

the molecules are specularly reflected.

Prove that Egs. (3.24) hold for a Maxwellian.

8. Prove that the heat-flow vector vanishes and the stress is diagonal if f
is a Maxwellian.

9. In Chapter 1 we proved the state equation, Eq. (3.26), using the addi-
tional assumption that the averages of the squares of the three compo-
nents of £ were equal. Here Eq. (3.26) was obtained for a quite general
situation. Explain why we needed the symmetry assumption in Chap-
ter 1.

SO W

~
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3.4 The H-Theorem

Let us consider a further application of the properties of the collision term
Q(f, f) of the Boltzmann equation:

of of _
‘55 E —aQ(f,f)-

If we multiply both sides of this equation by log f and integrate with
respect to £, we obtain:

(4.1) +E-

oH 0
(4.2) Bt + o T =S
where
(4.3) H = /R flogfd
(4.4) J = /ﬁ ,Eflogfds
(4.5) S=a / log £Q(f, f)de.
3

Egq. (4.2) differs from the balance equations considered in the previous sec-
tion because the right side, generally speaking, does not vanish. We know,
however, that the Boltzmann inequality, Eq. (2.2), implies:

(4.6) S<0 and S=0 iff f isa Maxwellian.

Because of this inequality, Eq. (4.2) plays an important role in the
theory of the Boltzmann equation. We illustrate the role of Eq. (4.6) in the
case of space homogeneous solutions. In this case the various quantities do
not depend on z, and Eq. (4.2) reduces to

oM
. —=8<0.
(4.7) o =S <0

This implies the so-called H-theorem (for the space homogeneous case) : H
is a decreasing quantity, unless f is a Maxwellian (in which case the time
derivative of H is zero). Remember now that in this case the densities p,
pv, and pe are constant in time; we can thus build a Maxwellian M that
has, at any time, the same p, v, and e as any solution f corresponding to
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given initial data. Since H decreases unless f is a Maxwellian (i.e. f = M),
it is tempting to conclude that f tends to M when ¢ — oo. The temptation
is strengthened when we realize that H is bounded from below by Has
(Problem 1), the value taken by the functional H when f = M. In fact H
is decreasing , its derivative is nonpositive unless it takes the value Hyr;
one feels that H tends to Hjs! This conclusion is, however, unwarranted
without a more detailed consideration of the source term S in Eq. (4.7).
This is deferred to Chapter 6, when the existence and properties of f will
be proved. Here we only remark that if H tends to Has, then it is easy to
conclude that f tends to M, thanks to the inequality (see Problem 2):

(48)  flof— flogM + M — f 2 eg( LMy 1 a |

where ¢ is a constant (independent of f) and

z if 0<2z<1
49 = 2=l
(4.9) 9(2) {1ﬁzz1 }

Integrating both sides of Eq. (4.8) gives

(@10 H-myzel[ If- Mg+ [ |f - MPMlag
L, S

where L; and S; denote the sets (depending on t) where | f — M | is larger
(resp. smaller) than M. Since H is assumed to tend to Hyy, it follows that
both integrals tend to zero when ¢t — oo. The fact that the second integral
tends to zero implies, by Schwarz’s inequality, that

@y [ i -mide < ([ 1 - MPMtagp [ bragse o

Then

@i [ r-anae= [ g - s [ 17 - e

also tends to zero and f tends strongly to M in L!.
If the state of the gas is not space homogeneous, the situation becomes
more complicated. In this case it is convenient to introduce the quantity

(4.13) H:/Hm
2
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where {2 is the space domain occupied by the gas (assumed here to be
time-independent). Then Eq. (4.2) implies

dH
(4.14) — < J - ndo
where n is the inward normal and do the measure on 82 . Clearly, several
situations may arise. Among the most typical ones, we quote:

1. 2 is a box with periodicity boundary conditions (flat torus). Then
there is no boundary, dH/dt < 0 and one can repeat about H what
was said about H in the space homogeneous case. In particular, there
is a natural (space homogeneous) Maxwellian associated with the total
mass, momentum, and energy (which are conserved as was remarked
in the previous section).

2. 12 is a compact domain with specular reflection. In this case the bound-
ary term also disappears because the integrand of J - n is odd on 912
and the situation is similar to that in case 1. There might seem to be a
difficulty for the choice of the natural Maxwellian because momentum
is not conserved, but a simple argument shows that the total momen-
tum must vanish when ¢ — oo. Thus M is a nondrifting Maxwellian.

3. §2is the entire space. Then the asymptotic behavior of the initial values
at oo is of paramount importance. If the gas is initially more concen-
trated at finite distances from the origin, one physically expects and
can mathematically prove (with arguments akin to those of Theorem
9.5.1) that the gas escapes through infinity and the asymptotic state
is vacuum.

4. {2is a compact domain but the boundary conditions on 82 are different
from specular reflection. Then the asymptotic state may be completely
different from a Maxwellian. This case will be described in more detail
in Chapters 8 and 9.

Problems

1. Show that if H(f) is the functional defined in Eq. (4.3) and M is the
Maxwellian with the same density, velocity, and internal energy as f,
then H(f) > H(M). (Hint: use the inequality zlogz — zlogy +y—2z > 0,
valid for non-negative y and z and the fact that log M is a collision
invariant so that fses log M(f — M)d¢ = 0. Another possibility is to find
for what functions f the first variation é [ f log fd¢ vanishes under the
constraint that [ fd¢ is given for any collision invariant 1.

2. Show that inequality (4.8) (which is an improvement of the inequality
used in the previous problem) is true (Hint: study the function h(x) of
the real variable z, defined by h(z) = zlogz+1-z—cg(| z—1]) | z—1 |,
with a sufficiently small constant ¢ and then let z = f/M).
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3.5 Loschmidt’s Paradox

Boltzmann’s H-theorem is of basic importance because it shows that his
equation has a basic feature of irreversibility: the quantities M (in the space
homogeneous case) and H (in other cases where the gas does not exchange
mass and energy with a solid boundary) always decrease in time. This
result seems to be in conflict with the fact that the molecules constituting
the gas follow the laws of classical mechanics, which are time reversible.
Accordingly, given a motion at t = to with velocities £(1), £ ... ¢WN) we
can always consider the motion with velocities —¢(1), —¢@ ... —¢W) (and
the same positions as before) at t = tg; the backward evolution of the latter
state will be equal to the forward evolution of the original one. Therefore
if dH/dt < 0 in the first case, we shall have dH/d(—t) < 0 or dH/dt > 0 in
the second case, which contradicts Boltzmann’s H-theorem.

This paradox is mentioned by Thomson in a short paper?!, which is
seldom quoted. This paper appeared in 1874 and contains a substantial
part of the physical aspects of the modern interpretation of irreversibility
not only for gases, but also for more general systems made up of molecules.
Thomson notes that “the instantaneous reversal of the motion of every
moving particle of a system causes the system to move backwards, each
particle of it along its old path, and at the same speed as before, when again
in the same position. That is to say, in mathematical language, any solution
remains a solution when ¢ is changed into —t¢. .. If, then, the motion of every
particle of matter in the universe were precisely reversed at any instant,
the course of nature would be simply reversed for ever after. The bursting
bubble of foam at the foot of a waterfall would reunite and descend into the
water; the thermal motions would reconcentrate their energy, and throw the
mass up the fall in drops re-forming into a close column of ascending water.
Heat generated by the friction of solids and dissipated by conduction, and
radiation with absorption, would come again to the place of contact, and
throw the moving body back against the force to which it had previously
yielded. Boulders would recover from the mud the materials required to
rebuild them into their previous jagged forms, and would become reunited
to the mountain peak from which they had formerly broken away. And if
the materialistic hypothesis of life were true, living creatures would grow
backwards, with conscious knowledge of the future, but no memory of the
past, and would become again unborn.” He also remarks: “If no selective
influence, such as that of the ideal ‘demon,’ guides individual molecules,
the average result of their free motions and collisions must be to equalize
the distribution of energy among them in the gross...” In other words, the
impossibility of observing macroscopic phenomena that run backwards with
respect to those actually observed is, in the last analysis, due to the large
number of molecules present even in macroscopically small volumes.

Josef Loschmidt, to whom the paradox is usually attributed, mentioned
it briefly in the first'? of four articles devoted to the thermal equilibrium of
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a system of bodies subject to gravitational forces. His intention was to show
that the heat death of the universe (which seems to follow from the second
principle of thermodynamics) is not inevitable. In a passage of the paper
he says that the entire course of events in the universe would be retraced if
at some instant the velocities of all its parts were reversed. In spite of the
obscure arguments of Loschmidt, Boltzmann quickly got the point and gave
a thorough discussion of the paradox®, ending with a conclusion similar to
that of Thomson.

Nowadays we are more prepared to discuss this kind of question. In
fact, we remark that when giving a justification of the Boltzmann equation
in the previous chapter, we used the laws of elastic collisions and the con-
tinuity of the probability density at the impact to express the distribution
functions corresponding to an after-collision state in terms of the distribu-
tion functions corresponding to the state before the collision, rather than
the latter in terms of the former. It is obvious that the first way is the right
one to follow if the equations are to be used to predict the future from the
past and not vice versa; it is clear, however, that this choice introduced a
connection with the everyday concepts of past and future, which are extra-
neous to molecular dynamics and are based on our macroscopic experience.
When we took the Boltzmann—Grad limit we obtained equations that de-
scribe the statistical behavior of the gas molecules: a striking consequence
of our choice is that the Boltzmann equation describes motions for which
the quantity H (or H) has a tendency to decrease, while the opposite choice
would have led to an equation having a negative sign in front of the colli-
sion term, and hence describing only motions with increasing H. We must
remark that, in order to derive the Boltzmann equation, we took special
(although highly probable) initial data; thus certain special data were ex-
cluded. As the discussion in the previous chapter (Section 3) shows, these
excluded data correspond to a state in which the molecular velocities of
the molecules that are about to collide show an unusual correlation. This
situation can be simulated by studying the dynamics of many interacting
particles on a computer and leads to an evolution in which there is an in-
creasing H, as expected, while “randomly” chosen initial data invariably
lead to an evolution with decreasing H'*. In other words, the fact that
H decreases is not an intrinsic property of the dynamical system but a
property of the level of description.

It is not the place here to discuss the relation of the H-theorem with the
notions of past and future!»'2. We only comment on an amusing example of
Miller and Shinbrot!®, which shows the pitfalls of the subject. They defined
a system on 2 with the evolution Ty(z,y) = (zet, ye™*) or, in differential
form:

dx dy
P
This system is clearly time-reversible because t = —t, z =y, y =<

(5.1)
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changes the system into itself. The corresponding “Liouville equation” is:

P oP oP

Miller and Shinbrot!® define a reduced description based on
(53) PO = [ Pla, )y

R
PO satisfies:

ap ap?)

- (1) —
(5.4) Y +z 5 +P 0.
Hence, if we define:
(5.5) H= / PMiogPMNdz,
£
we obtain:
(5.6) i _ _ / PWdz <0,
dt R

which shows a formal resemblance to the H-theorem. It would seem that we
have obtained a cheap example of how to obtain irreversibility from a time-
reversible model, without the subtleties related to the Boltzmann-Grad
limit. The pitfall lies in the fact that when we perform the transformation
t = —t, z = y, y = z, the functional H, defined by Eq. (5.5) does not
transform into itself; Boltzmann’s H, on the other hand, transforms into
itself when all the molecular velocities are changed into their opposites.

We remark that the term “time-reversible” has different meanings in
the mathematical literature; a detailed discussion of the various definitions
is given in a paper by R. Illner and H. Neunzert!S.

It is perhaps not out of place to comment on a statement that is fre-
quently made, to the effect that no kind of irreversibility can follow by
correct mathematics from the analytical dynamics of a conservative system
and hence some assumption of kinetic theory must contradict analytical
dynamics. It should be clear that it is not a new assumption that is intro-
duced, but the fact that we study asymptotic properties of a conservative
system in the Boltzmann-Grad limit, under the assumption that the initial
probability distributions are factorized in the way indicated in Eq. (5.2).
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Problems

1. Show that Eq. (5.2) is the appropriate Liouville equation for the dy-
namical system defined by Eq. (5.1).

2. Show that Eq. (5.4) follows from Eq. (5.2).

Show that Eq. (5.6) holds.

4. Obtain Eq. (5.6) from the explicit dynamics of the Miller-Shinbrot
model, i.e. Ti(z,y) = (zet,ye™?).

w

3.6 Poincaré’s Recurrence and Zermelo’s Paradox

There is another objection that can be raised against the H-theorem when
presented as a rigorous consequence of the laws of dynamics. The starting
point is a theorem of Poincaré?® (the so-called recurrence theorem), which
says that any conservative system, whose possible states form a compact set
in phase space, will return arbitrarily close to its initial state, for almost
any choice of the latter, provided we wait long enough. This applies to
a gas of hard sphere molecules, enclosed in a specularly reflecting box,
because the set of the possible states S with a given energy is compact
and has a finite measure u(S) (induced by the Lebesgue measure). If A is
a subset of S with measure u(A), which evolves into a set A; at time ¢
(according to the dynamics of the system), then pu(A:) = u(A). To prove
Poincaré’s theorem, let us assume that there is a subset A whose points
will never come back to A. We choose A small enough and 7 large enough
so that A, and A do not overlap (if this is impossible, the theorem is
trivially true); then none of the sets Ay, As;,... overlap, because, if A,,
and A(n4x), had points in common, then by tracing the motion backwards
and using the uniqueness of the motion through any given phase space
point, it would follow that A and A, must have common points, and this
would contradict the definition of A. If A, A, Az, ... do not overlap, then
since u(A) = p(A,) = p(Az,) = ..., the total measure of the union of these
disjoint sets would be infinite (which is impossible because p(S) < o0),
unless p(A) = 0, and Poincaré’s recurrence theorem is proved.

This theorem implies that our molecules can have, after a “recurrence
time,” positions and velocities so close to the initial ones that the one
particle distribution function f would be practically the same; therefore
H should also be practically the same, and if it decreased initially, then
it must have increased at some later time. This paradox goes under the
name of Zermelo, who stated it in 189623, but it was actually mentioned
before in a short paper by Poincaré!®. The traditional answer to Zermelo’s
paradox was given by Boltzmann himself®: the recurrence time is so large
that, practically speaking, one would never observe a significant portion of

the recurrence cycle. In fact, according to an estimate made by Boltzmann?,



56 3. Elementary Properties of the Solutions

the recurrence time for a typical amount of gas is a huge number even if
the estimated age of the universe is taken as the time unit.

In view of the fact that we claim validity for the Boltzmann equation
in the Boltzmann-Grad limit only, we do not have to worry about the
recurrence paradox; in fact, the set S is no longer compact when N — oo
and the recurrence time is expected to go to infinity with N (at a much
faster rate). ‘

3.7 Equilibrium States and
Maxwellian Distributions

The trend toward a Maxwellian distribution expressed by the H-theorem
indicates that this particular distribution is a good candidate to describe a
gas in a (statistical) equilibrium state. In order to prove that a Maxwellian
describes the equilibrium states of a gas, however, we must give a definition
of equilibrium. Intuitively, a gas is in equilibrium if, in a situation where it
does not exchange mass and energy with other bodies, its state does not
change with time. Thus for the moment we define an equilibrium state to be
one of a gas in a steady situation in a box with periodic or specular reflection
boundary conditions. It is then clear that the distribution function must be
a Maxwellian; in fact, Eq. (4.2) implies (when H does not depend on time):

(7.1) — J - ndo =/ Sdz <0

a0 n
where n is the inward normal and equality holds if and only if f is
Maxwellian. But J - n is zero for the situation under consideration and
the only possibility is that f be a Maxwellian. We must now impose the
condition that this Maxwellian must be a steady solution of the Boltzmann
equation i.e. it must satisfy

of

7.2 === .

(72) ¢ o = aQ(f,f)
This readily implies that both the right- and the left-hand sides of the

Boltzmann equation must vanish; as a consequence, the parameters A4, 3,

and v appearing in the Maxwellian

(7.3) f=Aexp(-B|&~v )

must be of the form v = vg +w Az, A = Agexp|| w |?)| z |2 —(w - 7)?],
B =constant (where vy and w are constant vectors and Ag is a constant
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scalar; A denotes the vector product). If the periodicity condition or the
specular reflection boundary condition is imposed, it turns out that A and
v must also be constant (and not space-dependent). Thus a Maxwellian
with constant parameters is the most general equilibrium solution of the
Boltzmann equation.

The question immediately arises, whether there are solutions of the
Boltzmann equation that are Maxwellians with parameters depending on z
and ¢. Since the right-hand side of the Boltzmann equation vanishes iden-
tically if f is a Maxwellian, it turns out that a Maxwellian, i.e., a function
of the form specified in Eq. (7.3), can be a solution of the Boltzmann equa-
tion if and only if A, 3, and v depend on ¢ and z in such a way that f also
satisfies:

of
Bt

of
(7.4) +&- B 0.
Since the general solution of this equation has the form f = f(z — vt,z A
£, ), it turns out that there are several solutions of this form; they were
investigated by Boltzmann’ in 1876. Among them we quote the case met
above in which v = vp+wAz, A = Apexp|| w |?| z |? —(w-z)?], B = constant
(with vg, Ap and w constants) and the case in which A = constant, § =
Bo(1 +t/to)%,v = (t + to)"'z. The latter solution describes a compression
if to is negative (but the solution ceases to exist for ¢ >| tp |), and an

expansion if tg > 0 (in which case the solution exists globally).

Problems

1. Prove the statement that in Eq. (7.3) the parameters must be constant
in an equilibrium state.

2. Check that the general solution of Eq. (7.4) is of the form f = f(z —
vtz A E,€).

3. Find all the Maxwellians that are solutions of the Boltzmann equation
(see Refs. 4, 6, and 7).

3.8 Hydrodynamical Limit and Other Scalings

A point of great relevance in the study of the Boltzmann equation is the
analysis of the scaling properties: a large system, as we shall see, can be
more conveniently described in terms of fluid-dynamic equations, when it
is considered on a suitable space-time scale.

Let us consider a gas obeying the Boltzmann equation, confined to
a large box A, of side €71,¢ being a parameter to be sent to zero. Let
fe=fe(z,,t), x € A, be the number density of the particles. We assume
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that the total number of particles is proportional to the volume of the box,
i.e. we normalize f¢ as follows:

(8.1) /A @i = e

We also assume that the time evolution is given by the Boltzmann equation

of¢
(8.2) N +£-
and look at the behavior of the system on the scale of the box; in this case
we have to use appropriate space and time variables, because in terms of
the variable z, the box is of size ¢!, while we would like to regard it as
being of order unity. Thus we introduce the new independent and dependent
variables

U — aqure, 9

(8.3) r=ex, T=E¢t (re A

(8.4) fr&t) = f(z,6,t).

Clearly, f describes the gas on the scale of the box and is normalized to
unity:

(8.5) / frgarae=1.

The picture of the (same) system in terms of the variables r and 7 is called
macroscopic, while the picture in terms of z and ¢ is called microscopic. Note
that on the macroscopic scale the typical length for the kinetic phenomena
described by the Boltzmann equation, i.e. the mean free path, turns out to
be of order ¢ (since it is of order unity on the scale described by ). Thus
sending the size of the box to infinity like ™! or the mean free path to zero
like € are equivalent limiting processes.
In terms of the macroscopic variables, Eq. (8.2) reads as follows:

f

0 L ¢. % _ —1aq(f, .

ar .
Thus, on the scale of the box, the mean free path (inversely proportional
to the factor in front of @) is reduced by a factor e. This means that the
average number of collisions diverges when ¢ — 0 and the collisions become
dominant. For Eq. (8.6) to hold, Q(f, f) must be small of order ¢, so that f

(8.6)
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is expected to be close to a Maxwellian, whose parameters are, in general,
space- and time-dependent. In this case the macroscopic balance equations
(3.18-3.20) can be closed through Egs. (3.26) and (3.27) t o obtain the
Euler equations for a perfect compressible fluid. These considerations can
be made rigorous and will be illustrated in detail in Chapter 11.

For now, let us mention other physical considerations concerning our
scaling. To this end, let us consider a small portion of fluid in a neigh-
borhood of a point 7 € A (Fig. 4): By the scaling transformation this
portion is magnified into a large system of particles, which is seen to
evolve on a long time scale. It will have a tendency to “thermalize” so
that its distribution will quickly become a local Mawellian with parame-
ters A(e~r), B(e r),v(e~!r) suitably related to the fluid-dynamic fields
p, e,v. These will evolve according to the Euler equations on a much slower
scale of times. Thus we have illustrated two different time scales. The fast
one, which we call kinetic, is of the order of the time necessary to reach
a local equilibrium, a process described by the Boltzmann equation. The
slow scale, which we call fluid-dynamic, describes the time evolution of the
parameters of the local Maxwellian.

FIGURE 4.

We notice that the same considerations could apply to the Newton
equations (or the corresponding hierarchy of equations for the s-particle
distribution functions). Although one might expect that the Newton equa-
tions, under the above scaling, should yield the Euler equations, our igno-
rance of the long—time behavior of Hamiltonian systems is such that, at the
moment, we are quite far from a rigorous derivation of the hydrodynamical
equations starting from the basic laws of classical mechanics.

Let us now analyze another scaling, which clarifies the nature of the
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Newton Laws

Space-time and low density
scaling (Boltzmann-Grad limit)

(2)

Space-time scaling | (1) Boltzmann equation

Space-time scaling (o« — *)

{ (3)

Euler Equations

Euler Equations
for rarefied gases

FIGURE 5.

Boltzmann-Grad limit. We now require the number of particles in A, to be
of the order of €72, i.e., we replace Eq.(8.1) by

(8.7) /A @edede =

In order to keep the normalization to unity of f (r,&,1), expressed by Eq.
(8.5) we change the scaling from Eq. (8.4)

(8.8) fr,6,t) =1 (x4, 1).
Then we obtain, in place of Eq. (8.6)
(89) N )

Hence the Boltzmann equation is invariant for the space-time scaling (4.3),
provided that the particle number goes as the power 2/3 of the volume. This
invariance property suggests that the Boltzmann equation can be derived
from the BBGKY hierarchy via a space-time scaling with the total number
of particles proportional to €~2; this is what can be checked at a formal
level and is essentially what we did in Section 2.5, where ¢, of course, was
the molecular diameter o. It is also clear why the Boltzmann-Grad limit
is frequently called the low-density limit; in fact, in this limit, the particle
number in a large box divided by the volume of the box goes to zero.
The number of collisions per unit (macroscopic) time stays finite, while it
diverges in the hydrodynamical limit, as we saw before.

We summarize the content of this section in Fig. 5.
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As we said earlier, nothing is known at a rigorous level about the limit
indicated by arrow (1); the limit corresponding to arrow (2) has been proved
for short times and for an expanding rare cloud of gas, as we demonstrate
in the next chapter; the limit (3) is quite well understood.

Notice that the Euler equations indicated by arrows 1 and 3 in Fig. 5
are in general not the same; the first describe the hydrodynamical behavior
of a particle system, the second that of a rarefied gas evolving according
to the Boltzmann equation. As a consequence, the state equation relating
pressure and density in the first case is in general not that of a perfect gas,
as in the second case. This important difference will be discussed in some
detail in Chapter 11.

Problem

1. Check that the low—density limit based on Egs. (8.7) and (8.8) is for-
mally equivalent to the limiting procedure used in Section 2.5 to obtain
Eq. (5.1) from Eq. (4.13).
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4

Rigorous Validity of the
Boltzmann Equation

4.1 Significance of the Problem

In Chapter 2 we gave a formal derivation of the Boltzmann equation from
the basic laws of mechanics. In particular, we introduced the Liouville equa-
tion, the BBGKY hierarchy, the Boltzmann hierarchy, and the Boltzmann
equation, and we discussed the assumptions that allowed us to make the
transitions from each of those to the next. The objective of this chapter is
to do all these steps rigorously, wherever possible. In particular, our discus-
sion will lead to a rigorous validity and existence result for the Boltzmann
equation, locally for a general situation and globally for a rare gas cloud in
vacuum.

The importance of the problem is evident: We have to settle the fun-
damental question of whether the irreversible Boltzmann equation can be
rigorously obtained from reversible mechanics. The answer to this query is
yes, as we shall see here. In particular, there is no contradiction between the
second law of thermodynamics and the reversibility of molecular dynamics,
at least for the hard-sphere model of a rarefied gas.

We will start, as in Chapter 2, from hard-sphere dynamics and the
Liouville equation. One difficulty we face is to give a rigorous derivation of
the BBGKY hierarchy for hard spheres—the problem we must deal with is
that the flow operators (Tt)temv introduced in Chapter 2, are not defined
through multiple collisions (here, and in the sequel, “multiple collision” will
always mean simultaneous contact of more than two hard spheres). Also,
they are not globally defined on phase points leading to infinitely many
collisions in finite time. Therefore, we first have to define the hard-sphere
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dynamics, at least almost everywhere, by deleting suitable sets (of measure
zero) of phase points leading to configurations for which the flow cannot be
continued any longer. Then we have to prove that the dynamics, in terms
of probability distributions give rise to the BBGKY hierarchy introduced
in Chapter 2.

The latter is not an obvious step. For example, as we anticipate that
the hard-sphere flow T} is only almost everywhere defined, the marginal
distribution densities P(®) will only be L!-functions, no matter how regular
they were at time zero. However, the right-hand side of the BBGKY hier-
archy involves restrictions of P(®) to sets of codimension one, a restriction
that does not immediately make sense at this level of regularity. We there-
fore have to justify the BBGKY hierarchy first and explain in what sense it
holds. This rigorous derivation is important, but unfortunately rather tech-
nical. As it is probably of marginal interest for most readers, we confine it
to Appendix 4B together with certain other properties of the hard-sphere
dynamics.

The next and still more difficult step is to take the Boltzmann-Grad
limit and prove that the solution of the BBGKY hierarchy converges to a
solution of the Boltzmann hierarchy. For short times, this was first done
by O. Lanford in a classical paper '°. Lanford’s paper contains only a
sketch of the proof; a more detailed treatment is given by H. Spohn in his
recent monograph 23. The approach we take here uses somewhat different
estimates. We also present an extension 718, due to two of the authors,
which gives a global validity result for a gas cloud in all space if the mean
free path is large. This is the only global result known so far. In both
cases, we also prove propagation of chaos and existence and uniqueness of
solutions for the Boltzmann equation.

4.2 Hard-Sphere Dynamics

Consider a system of N hard spheres of equal mass and diameter ¢ > 0in a
domain A C R3. Sometimes, we let A = R3. If A # N3, we assume that A
is so smooth that a unit normal to JA exists at every ¢ € 9A. The state of
the system is given by a phase point z = (x1,...,ZN, &1, . .,En) € AXRIN.
The phase space is

r={ze AN x ?R?’N;Ixi‘l"ﬂ >o,i#j}

We say that two particles at z; and z; = z;+no,n € S 2 are in an ingoing
collision configuration if their velocities &;, &; satisfy n- (§; —§&;) >0 (in a
grazing configuration of n - (§; — &;) = 0, and in an outgoing configuration
if n- (& —&;) <0). Let the collision transformation J be defined by

(21) J: (&ivn’ {7) — (67/,: —-n, gg)a
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where & ,{; are given by (2.1.6). J is easily seen to be an involution,
i.e., J? = id; as proved in Section (2.1), it preserves Lebesgue measure on
R3 x 82 x N3 (this also follows from J? = id, see Problem 1), and it takes
ingoing (outgoing) configurations into ingoing (outgoing) configurations.

We remind the reader of the laws of momentum and energy conser-
vation (2.1.5). Between collisions, the spheres move on straight lines with
their velocities unchanged (there are no outer forces or gravitational forces
between the particles). If a particle hits 04 at a point = with velocity &;, it
gets reflected with velocity

(2.2) & =& - 2n(z)(n(z) - &),

where n(z) is the inner normal at x to dA. There are many other possible
boundary conditions, but we only discuss (2.2) for simplicity. The condition
(2.2) satisfies £2 = £2, i.e., the particle neither gains nor loses energy.
Egs. (2.1), (2.2), and the free flow determine completely the time evo-
lution of all phase points z for which the particles experience (in backward
or forward evolution) only pair collisions and hit the boundary 04 only in
isolated collisions. If the time evolution leads a phase point into a triple or
higher-multiple collision, or into a situation where two particles collide with
each other and at the same time with 94, the flow through such situations
is not determined (it is easy to see that momentum and energy conservation
leave too many degrees of freedom). Fortunately, we have the following.

(4.2.1) Theorem. The following sets are of Lebesgue measure zero in phase
space:

1. the set of all phase points that are led into a multiple collision under
forward or backward evolution,

2. the set of all phase points such that there is a cluster point of collision
instants under forward or backward evolution,

8. the set of all phase points such that there is a cluster point of collision
instants with the boundary under forward or backward evolution.

We discuss Theorem 4.2.1 in Appendix 4.A. For the moment we observe
that by deleting the null sets defined in the theorem from phase space, we
arrive at a set Iy C AY x R3N on which the time evolution of every phase
point z is globally defined backward and forward.

For z € Iy, let Ttz be the state of the system ¢ units of time later. The
family {T*;t € R} is a group: T° = id, T® o T* = T*** for all t,s € R.

We refer to this group as “the flow in phase space.” It has the additional
property of mechanical reversibility, which we formulate as follows.

Define an involution S : Iy — Iy by

S(xy...2n,& ... &N) = (x1... 2N, —&1 ... — €N),

then
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(2.3) T'ST'z = Sz

forall z € Iy, te R,

Eq. (2.3) is a consequence of the involutive property of J. We can equiv-
alently write ST* = TS on I'y. Equation (2.3) must not be confused with
reversibility with time inversion (T~ oT? = id) or Poincaré-reversibility if
A is bounded (see Chapter 2), which are also true for {T%};cx.

We conclude this section by discussing some properties of the flow 7"
that will turn out essential for the validity proof for the Boltzmann equation
describing the evolution of a rare gas cloud in vacuum, and for the rigorous
derivation of the BBGKY hierarchy. For convenience, we
abbreviate

(@(t),€(t)) = (21(t) ...z (8),&a(t) .. . EN (1)) = TP,
then ;(t), &(t) € %2, z(t), £(t) € RN, 2 = ((0), £(0)).

Also, we set

2%(t) = 2(0) + t£(0), €°(¢) = £(0),

then the so defined group T describes the (fictitious) evolution of a system
in which the particles do not interact.
We focus on the case where A = R3. In this case, we have the following.

(4.2.2) Lemma.

L €@ = 1€(0)|| (this is also true if A # R® and if the boundary condi-
tion preserves energy)

& ToLeM=25L60.
3‘ Zi:l Z; (t) = Ei:l 2 (0) + t 211:1 62' (0)
Proof. 1 and 2 are immediate from the conservation of energy and momen-

tum. 3 also follows from momentum conservation— the details are left as
an exercise. 0

Let z € Iy, t > 0, and consider T*z. Suppose that during [0,t], there
are k collisions at 0 < t; <tz < ... <t < t, and that (n;,n4,7.) is the

ingoing collision configuration in the ith collision.

(4.2.3) Lemma.

k
=@ = llz°@)II* + 20 Z(t = ti)ns - (mi = mj).

In particular, because n; - (n; —n;) > 0, ||z(t)]| > ||12°(#)||, and ||z(t)]] — oo
as t — oo provided that £(0) # 0.
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Proof. Let I(Ttz) = ||z(®)||2, (Tt 2)~ = limg ~, Tz, (TH2)" = limp g, T2,
then, by energy conservation,
I(T'2) = I(Ty " (T 2)™)
N

= I((T™2)*) +2(t — tx) D @ate) - &lte) ™ + (= ti) €t

i=1
For simplicity, suppose that only one collision happens at time ¢, with ingo-
ing velocities n, 7}, and outgoing velocities (x, (;. If the colliding particles
are at yg, Yj, we have
Yk - Ck + Uk - G = yk (S + Ci) + (U — 0k
=y (e + M) + (Yk — Ye)Ck
=Yk M + Yk T + Wk — v (G — k)
=Yk M + Yk Mk + o - (M — i)
It follows that
I(th) = I(Té_tk (Ttkz)w) + 20’(t —te)ng - (k. — T];c)

Repeated application of this calculation leads to the assertion. 0

Later we will need a small generalization of Lemma 4.2.3, which we
formulate and prove now.

(4.2.4) Lemma. I(T§ o T'z) > I(Tg+sz) whenever s > 0,t >0 or s <0,
t<0.

Proof. For s > 0, t > 0 the proof of Lemma 4.2.3 applies without change.
For s <0, t <0, let S again denote velocity inversion. Using the identities
I(Sz) = I(2), STt = T*S and ST, * = T¢S, we find

I(Ty "' T-12) = [(STY'ST142) = I(TF'T 82)
> I(T3 M s2)
= I(To—lsl-ltlz)'
0

Remark. Parts 2 and 3 of Lemma 4.2.2, Lemma 4.2.3, and Lemma 4.2.4 are
in general wrong if A # R3.

Finally, we list some crucial consequences of Theorem 4.2.1.

The flow T? is only almost everywhere defined in Iy with respect to
Lebesgue measure. However, it is also well defined, again almost everywhere,
with respect to a suitable measure, on certain surfaces of codimension one.
Namely, consider the set ¥+ C Iy
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Ft ={z € Ig; |z — z;| = o for some i # j and (& — &) - ny; > 0}

where n;; = —-——1—|(;::z]|)|
which there are two particles at contact with outgoing velocities. On F,

consider the measure

In other words, F* is the set of all phase points in

do = d.’l?l ‘e d.'L‘,; .o d$j_1d$j+1 . d.’L'Ndfl SN dENdy,-jn,-j . (Ez - fj),

where dy;; is the surface element over the sphere of radius o centered at
x;. In the proof of Theorem 4.2.1 in Appendix 4.A, we also prove

(4.2.5) Lemma. The flow T* is also defined for o- almost all y € F+.

This lemma, discussed in some detail in Appendix 4.A, is crucial for a
rigorous validation of the BBGKY hierarchy. For the moment, however, we
will only briefly reflect on the implications.

Consider all points z € Iy that experienced a collision in the past.
Every such point 2 can be parametrized by a point y € F+ and by a time
t < a(y) such that Ty = z; here, a(y) is the time of the first collision ex-
perienced by y in the future. As demonstrated in Appendix 4.A, the change
of variables 2 — (y, t) is such that the Lebesgue measure transforms like
dz — do(y) dt. Therefore, if the flow T® were undefined on a set A with
o(A) > 0, it would also be undefined on the “tube” based on A4, i.e., on the
set {(y,t);y € A,0 <t < a(y)}. This set has positive Lebesgue measure,
and we have a contradiction to Theorem 4.2.1.

Problems

1. Use J? = id to show that |det—g%§-§% = 1, and conclude that J
preserves Lebesgue measure on £ x §2 x R3.

2.  Construct an example of a boundary 94 and a velocity £ such that
a particle moving with ¢ initially will have infinitely many collisions
with 84 in finite time. Two dimensions are sufficient.

3. Prove 3 in Lemma 4.2.2.

4.3 Transition to L. The Liouville Equation and the
BBGKY Hierarchy Revisited

The flow {T"} we introduced in Section 4.2 gives, from a strictly determin-
istic and mechanical point of view, a complete solution to the evolution
problem for a hard-sphere system. For rarefied gas dynamics, however, this
solution is unsatisfactory for the following reasons:
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1. In realistic cases we are interested in huge particle numbers, like N =~
1023, It is then impossible to follow the flow in detail or to determine
the initial state z exactly.

2. In addition, the information we could obtain by following a trajectory
{T*z}1e exactly might be of little relevance (atypical) from a phys-
ical point of view—there are, for example, some paths {I%z} along
which very pathological behavior is displayed—in particular, a system
of hard spheres can be arranged inside a rectangular box with reflecting
boundary conditions such that all the particles will undergo periodic
oscillations.

3. The Poincaré recurrence theorem applies to a system of N hard spheres
in a bounded domain and predicts that almost all phase points in I
return to within any neighborhood of their initial state infinitely often.

No such behavior is ever observed in real gases. We always see an
approach to some kind of equilibrium, and this suggests that we introduce
a method that can in some way describe the evolution of the particle system
from “less likely” to “more likely” states. The next logical step is to abandon
the consideration of individual phase points altogether and consider instead
a probability density function Py € L) (I") whose time evolution is then
given by the Liouville equation (2.1.11).

We now derive a version of the Liouville equation for which only min-
imal regularity of P(z,t) is required. If P(z,t) is the probability density of
the system at time ¢, we must have

(3.1) P(z,t)dz = / Py(2)dz
TtA A

for all Borel sets A in phase space. Because the Lebesgue measure dz is
invariant under 7" (see Chapter 2),

(3.2) / P(Tt2,t)dz = / P(z,t)dz = / Po(z) dz
A TtA A
and so P(T"z,t) = Py(z) for almost all z, or
(3.3) 4 1p(Tts, 1)) =0
' dt AT

We refer to (3.3) as the Liouville equation in mild formulation; the bound-
ary condition (2.1.15) is implicitly contained in (3.3). Clearly P(z,t) :=
Py(Ttz) solves (3.3).

Let us next discuss the BBGKY hierarchy arising from (3.3), intro-
duced at a formal level in Chapter 2.
Let

P@(z%,t) = / P(2%,2N72 t)d2V 2.
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Here, 2° = (z1...25,&1...&,) is used as shorthand for the 6s-dimensional
phase point describing the state of the first s particles. We write z =
(2%, 2V ~%), with the obvious meaning of the symbols.

Recall that

1. Since the particles are identical, Py(z) is symmetric with respect to all
particles, i.e., for any permutation IT (reordering of the particles) Po(I1z) =
Py(z). Because ITT?z = T*1I z, it follows that P(-,t) also has this symmetry.

By I'*, 1 < s £ N, we denote the phase space of s particles (phase
points leading to multiple collisions, etc., are deleted). The time evolution
of the s particles of which P(*)(2°,t) keeps track is influenced by the inter-
actions of the s particles with the remaining N — s particles. In order to be
able to quantify these interactions, we need one further assumption on Pp:
2. We require that t — Py(T"2) is continuous for almost all z € T

Assumption 2 is of tantamount importance in the sequel, such that
it deserves a further comment. If 2 is an N— particle precollisional phase
point and 2’ is the corresponding post-collisional phase point, i.e.,

z=(x1...2xi...x5...zNn, 6. & &5 EN)
with z; = z; + no and n- (&, — &) > 0,

Z=(x1...2i. .z an, & € 6 EN),
assumption 2 means that Py is continuous outside the contact points and
(3:4) Po(z) = Po(2').

In other words, “good” initial probability distributions are those that do
not distinguish between precollisional and post-collisional configurations.
We next address the problem of giving rigorous meaning to the right-
hand side of the BBGKY hierarchy.
Consider a phase point z belonging to the manifold F of codimension
1 defined by

(Z1...zi...zi+no.. N, & ... & ... & .. . EN) for some i # j.
Then, according to Proposition 4.2.5,
(3.5) P(z,t) = Py(Tt2)

is well defined for almost all (z;...z;_1Zj41...2N5,61...&5 ... €N, 0).
For j < s, we integrate P(z,t) over the last N — (s + 1) variables. We
obtain that

P(”l)(xl...xi...xs,xi ~na,§1.,.§i...§s+1,t)

is well defined for almost all (z; ...x,,&; ... &s, €541, 1) and all t. Therefore,
the operator 7, ,, acting on the time-evolved marginal distributions via
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Qg+1P(8+1)(:r1 .. ~$S’£1 s 687 t)
8
(3.6) =Y -9 [ dn [deean- (& - )
j=1 52

P(8+1)($1 e ey — 0,6y Esg, t)

is also well defined for all t and almost all z°. Moreover, we can prove the
following.

(4.3.1) Theorem. Under assumptions 1 and 2, QI PG+ (Tt2%,t) is con-
tinuous in t for almost all 2°, and the P*(-,t), 1 < s < N, satisfy the
BBGKY hierarchy in the mild sense, i.e.,

d

(3.7) =

[P(S)(ths’t)] = Qg+1p(s+1)(ths7t)
for almost all 2°.

We trust that the ideas presented in Chapter 2 and the properties of
the flow T* discussed in the previous section will suffice to convince most
readers of the validity of Eq. (3.7). We present a rigorous derivation of this
equation in Appendix 4.B.

Other rigorous discussions regarding the BBGKY hierarchy can be
found in the works of Uchiyama 24 and Petrina et al. 101,21,

Sometimes Eq. (3.7) is written in the following form:
(3.8) 8,P®) = {Hg, P<8>} (2°,8) + Q2 PEetD

where {H?, -} denotes the generator (Liouville operator) of the s— particle
dynamics.

It is easy to see that Egs. (3.7) and (3.8) are equivalent from a formal
point of view. The latter is reminiscent of the usual BBGKY hierarchy for
systems interacting via smooth two-body potentials. However, due to the
singularity of the hard-sphere interaction, the Liouville operator {H?,-} is
rather degenerate in our situation (remember that it involves collisions in
s-particle dynamics).

We summarize the meaning of Egs. (3.8) or (3.7). The changes in P(*)
are due to the s— particle dynamics (expressed above in {H7,-}) and due
to the interaction of the tagged group of s particles with coordinates 2*
with the rest. This interaction, which is clearly the dominant part in the
Boltzmann-Grad limit ¢ — 0, N — 0o, No? — const., is given by the
collision operator Q7. ;. This operator acts only on PG+ (and not on P)
because of the symmetry of P and the binary character of the interactions.

Finally, we mention that our consideration of hard—sphere systems has
advantages and disadvantages with respect to the Boltzmann—Grad limit.
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The main disadvantage is that we had to be careful even with the definition
of N— particle dynamics because of the singular character of the collisions.
Therefore, the derivation of the BBGKY hierarchy is more subtle for this
case than for interactions via smooth potentials. The main advantage is
that once we have the BBGKY hierarchy in the above form, it is so close in
structure to the Boltzmann hierarchy that an investigation of its behavior
in the Boltzmann—Grad limit seems natural and convenient.

In contrast, the collision operator of the BBGKY hierarchy for smooth
potentials involves derivatives with respect to velocity; this requires extra
algebraic work and makes the derivation less transparent. Moreover, if the
potential is really long range, the possibility of finding a suitable scaling
under which a Boltzmann equation can even formally be derived is not clear
from either a mathematical nor a physical point of view.

4.4 Rigorous Validity of the Boltzmann Equation

We saw in Chapter 2.5 how the Boltzmann equation arises in the Boltz-
mann— Grad limit from the BBGKY hierarchy via the Boltzmann hierarchy.
We will now show how this transition can be done rigorously.

First, however, we discuss a few aspects of the informal derivation that
should convince the reader that the Boltzmann-Grad limit is truly subtle
and requires a rigorous analysis.

Consider the BBGKY hierarchy (3.7)

d
(4.1) SPOTE2, 1) = (Qea P (Tha', 1)

(notice that we have here added an index o to the flow operators, as a
reminder that these operators do change as 0 — 0), and let us analyze
what happens to the collision operator in the Boltzmann—Grad limit.

We begin with expression (3.6) for the collision operator and split
the integration over $? into integrations over two hemispheres. On the
hemisphere given by (§; — &,+41) - n < 0 (incoming configurations), we leave
the argument of P(4*1) untouched, but we make here the coordinate change
n — —n and therefore change this part of the integral to an integral over
the hemisphere (§; — £541) -2 > 0.

On the hemisphere given originally by this latter inequality (outgoing
configurations), we leave n untouched, but we take advantage of the conti-
nuity of P(5+1) through collisions to replace the velocities & and &4y by
their precollisional counterparts 55 and &, , ;. The result of these operations
is
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Q7 P (2. 20,81 ... &)
8 .
=) (N~ 3)02/d§s+1/ dnn- (& — Esv1)
j=1 {n-(§5—€s41)20

{P(3+1(z1...xj...:cj —on, €. & Eay)

(4.2)

In the Boltzmann—Grad limit, formally Q7 — @, where

Qs+1f(s+l)(£l,‘1...ms,fl...fs)
= dé, ne(€;—~€s1) 2080 - (§5 — Eog1)
Jzz:l/ +1/ €i~Es41)20 j +1

{f(3+1(.731.‘..’Ej.,.Ij,fl"'gg‘"'gg*’l)
- f(3+1(x1...xj...xj,§1--'53'“"53*'1)}'

(4.3)

As for fixed s TEz® —> T¢2* for almost all 2° in the limit 0 — 0 (T de-
notes collisionless flow), we expect that the P(®) will converge to a sequence
of functions f(*) solving the Boltzmann hierarchy:

d
(4'4) _(Zt-f(S)(Tézs’t) = Qs+1f(s+1)(T(§zs)t)'

The relationship of the Boltzmann hierarchy (4.4) to the Boltzmann
equation is as already described in Chapter 2; If f(-, t) solves the Boltzmann
equation, then

FO@r .z, &) = [] £, 8550)

=1

solves the Boltzmann hierarchy. Thus, if the f(*) in (4.4) factorize initially
and if the factorization is preserved in time (the second if, usually referred
to as propagation of chaos, must be proved), the Boltzmann hierarchy and
the Boltzmann equation are equivalent.

By proving the convergence P(®) — f(3) and propagation of chaos,
we will complete our objective. First, however, we make some observations
that will clarify what we can expect to achieve.

In the derivation of the operator ), we chose to represent collision
phase points in terms of ingoing configurations. Given the assumed conti-
nuity along trajectories, we could use the representation in terms of outgo-
ing configurations, and that would lead formally to a limit that is Eq. (4.4)
with a minus sign in front of the collision operator. Also, if we take the
formal limit in the right-hand side of Eq. (3.7) without first splitting into
gain and loss terms, we obtain zero, because the integrations over the two
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hemispheres compensate each other. We are thus compelled to ask whether
the representation in terms of ingoing configurations is the right one, i.e.,
physically meaningful. As we shall see later in a more careful analysis of the
validity problem, the representation in terms of ingoing configurations fol-
lows automatically from hard-sphere dynamics and is, indeed, not a matter
of an a priori choice.

We now consider Eq. (4.1) for s = 1 and discuss the propagation
of chaos. Assuming representation in terms of ingoing configurations, the
right-hand side reads

(N_ 1)02 /};;3 d£2/ n-(fl—'fz)zodn n: (51 "62)

(4.5) {P®(z; + t&1, z1 + t€1 — no, £}, €53 t)
~P@(z) 411,z + 11 + no, &1, ;1))

In order to get the right-hand side of the Boltzmann equation, we have
to make the crucial assumption that in the limit N — o0, 0 — 0 and
No? — a > 0 there is a function f = f(z,£,t) such that

Jim PO(,6,1) = f(z,6,1)
lim P (z,z+no,&,&;:t) = f(z,61,) f(z,&2,1)

N—o0

(4.6)

provided that the configuration is ingoing. If this convergence holds, we get
the Boltzmann equation in the mild formulation

Gareen=afd [ an-E-e)lf - 181+ 0.

Our convention here is that f.(z +t£,t) = f(z + t€, &, 1), ete.

It turns out that (4.6) is a statement stronger than what we need.
Worse, (4.6) can be violated even at time ¢t = 0 for quite reasonable P(?s,
as we will show by an example. The form of propagation of chaos we will
be able to prove is that

P(Z)(wl)x23513£2;t) — f(xlaglat)f(x2)€2>t)

for almost all 1, 22, £;, €2 [and not on a manifold of codimension one, as in

(4.6)].
The following is an example for which (4.6) fails. Suppose that fy is
given and smooth. Let

N
P(N)(Z) = CH fo(xi, &) Hxij(a:i’mj)v

=1 1<j

where x;;(2i,z;) is in C(R3 x R3) for all i < j and
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( ) lif|lz; —zj| >0 +¢€

(@ zg) =4

Xig\ T &g 0if |z; — x| <o

The constant C = C(e) is there to normalize P(M), If € \, 0 as ¢ — 0 and
N — 00, we certainly have

8
Jim PO (... 24,61.. . &) = _Hlfo(xi,&i),
1=
and assumptions 1 and 2 hold. However, (4.6) is violated by construction.
The observations we have made so far show how dangerous it is to
argue with generators in this derivation, because we clearly cannot have

= {PO@e .0}

in the Boltzmann—Grad limit.

In Appendix 4.C we discuss an example of a discrete velocity model
for which the derivation done in the present section fails completely.

Given that convergence of the derivatives is not to be expected, what
we are going to do is look at the solution of the BBGKY hierarchy and the
Boltzmann hierarchy as a whole (and not at their derivatives) and show
that the first converge a.e. to the second. The solution concept that allows
us to do this is a series solution concept we now introduce.

After integration from 0 to ¢, we get from (4.1) that

d
— = ([ + 660},

t=0

t
PON(TE2%,t) = PSP (2°) + / dt, (Q;’+1P(3+1)) (T 2*,t1)
0

or
t
PO, 1) = (SR () + / dty S, (t — 11)Q7, P (2°, 11)
0

where S, (t)f(2%) = f (T;%2%).
By iterating the last equation N — s times and using the convention
that Pé‘g) = 0 for s > N, we can express P(s)(zs,t) as a finite sum of

multiple integrals involving only the functions Pér) for r > s:

( ) el t t1 tn-1
PY¥(2%t) = /dt / dt / dtn
(4.7) %9 ,;_0 o Jo 0
Sa(t —t1) g+lsa(t1 - t2) e ;'+nSa(tn)P0(zs)

Note that the sum is actually finite because of our convention. For s = N
(4.7) reduces to PN)(z,t) = S,,(t)PéN)(z), which is the solution of the
Liouville equation.

Equation (4.7) is an equality that holds for almost all 2*. We hope that
the discussion given in the previous section has convinced the reader that
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the right-hand side of Eq. (4.7) is well defined (that it actually is follows
rigorously from our rigorous derivation of the BBGKY hierarchy given in
Appendix 4.B).

Similarly, a formal series solution can be written down for the Boltz-
mann hierarchy (4.4). It is

o0 i t1 tn—1
@ 1) = /dt/ dt / dt,
(4.8) f()§0102°
So(t — 1)Qus1S0(t1 — t2) .- QuinSolt) £

where
So(t)f(2*) = f(T5 '=*)

(the reader should not confuse the summation index n with the unit vector
n occurring in (4.2) and elsewhere).

In contrast to (4.7), (4.8) is an infinite series, and the question of
convergence becomes critical.

There is an obvious trace problem in the definition of Q on L!-functions
(see Definition (4.2)); the series solution concept we adopt nicely avoids this

problem, because each term of the series (4.8) involves fés) evaluated at
phase points that are computed by repeated adjoinment of collision partners
(this is what @ does) and backward free streaming (this is what Sp does),
such that each term on the right-hand side of (4.8) makes sense if fés) is
assumed to be sufficiently smooth.

We emphasize at this point that (4.7) and (4.8) are profoundly dif-
ferent, in spite of their formal similarity. From a physical point of view,
(4.7) describes a Hamiltonian (reversible) dynamical system, while (4.8)
describes a dissipative evolution that is compatible with the H-theorem.
Also, technically speaking, @ is more singular than Q7: Indeed, Q.41 in-
volves the trace of f(**1) on a manifold of codimension three, while Q7 1
needs the trace of P(**1) on a manifold of codimension 1 (the sphere has
shrunk to a point).

On the other hand, the presence of the flow T in (4.7) makes it hard to
interpret the BBGKY hierarchy from a pure PDE point of view. The hier-
archy in Eq. (4.1) is a family of equations that can only be established once
the flow T is defined and the properties of this flow are well understood.
We did this in the previous section.

After this long introduction we are finally able to formulate our rigor-
ous validity result.

Consider an N-particle system in a region A. We shall assume either
A = R% or A C R bounded, with a smooth boundary. T¢ and T¢ will
refer, as always, to the N-particle dynamics and the free flow, both with
reflecting boundary conditions on 8A. The case in which A is a rectangle
with periodic boundary conditions can also be considered.
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Suppose that fé")(zs) = [1;_; fo(z:, &) is the factorizing initial value

for the sth equation in the Boltzmann hierarchy (molecular chaos or sta-

tistical independence is taken for granted at ¢t = 0), and that Po(s)(zs) is

the initial value for the sth equation in the BBGKY hierarchy. We send
N — 00, 0 — 0 in such a way that No? = o and assume that

i) if (A x §R3);’U = {2° € A* x R |z; — z;| > 0,0 # j, 0 > 0}, then the

P{*) are continuous on (A x %%)%"

#
along trajectories). fo is continuous and limy . Py” = f{* uniformly on
compact subsets of (A x %3);6 forall s =1,2,...

and at the collision points (continuity

ii) there are positive constants 3, C, and b such that

(4.9) sup P (2*) exp {,3 e } <C-b°

i=1
for all s.

(4.4.1) Theorem. Suppose that i) and ii) hold. Then on a sufficiently small
interval [0,to], the series solution P*)(-,t) of the BBGKY hierarchy con-
verges in the Boltzmann—Grad limit almost everywhere to the series solution
of the Boltzmann hierarchy f (")(‘, t). This solution exists, is unique, and is
of the form

f(s)(zs7t) = H f(miaéiat)v
=1

where f is a mild solution of the Boltzmann equation to the initial value fo.

Proof. The proof of this theorem is done in four steps.

In step 1, we show that the convergence of the series (4.7) to (4.8)
holds term by term. This step is technically rather straightforward, but, as
we shall see, conceptually deep.

Step 2 is completely straightforward. We simply observe that the con-
vergence proof will follow from step 1 if there is a non-negative converging
series whose terms bound simultaneously those of (4.7) and (4.8).

We construct such a series in step 3. This is the technical part of the
proof and the only part where we use the smallness assumption on the time
interval.

Finally, in step 4, we prove uniqueness and the factorization property.

Step 1. We want to prove that by virtue of assumption 1) in the Boltzmann—
Grad limit N — o0, 0 — 0, No? = a
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t1 tn—1
f dty / dts .. / dt

So(t — 11)Q%4 150 (b1 — t2) - .. QnSo(ta) BT (2°)

t il tn~1
i / dtl / dtg [N / dtn
0 0 0

So(t — t1)Qs4+1S0(t1 — t2) ... Qs+n5cr(tn)fés+n)(zs)

(4.10)

almost everywhere.
We first discuss the simplest case s = n = 1, where we have to prove
that

/ "ty St~ 1)Q3E S, (61) P (2, €)
(4.11) 0

—>‘/0 dty So(t'"tl) Sﬂ(tl) (2)( )

with
=@t -Q
and
R=Q"-Q".

The last two identities are the decomposition, based on the ingoing repre-
sentations of collision configurations, of the collision operator in gain and
loss part [see (4.2) and (4.3)]. We first prove (4.11) for Q~, in which case
(4.11) reads explicitly as

/Ot dty /d€2 /n-(&—gz)zo dnn- (& — &)

Sa(tl)Po(z)(Zl =&t —t1), 1 — &t —t1) +no, &1, 62)

—-+/0t dtl/d& /n-(&_&)zod""'(fl - &2)

So(t1) 62)(1’1 =&t —t1),z — &t~ t1), &1, &2).

(4.12)

Next notice that as ¢ — 0

T,z — E1(t = t1), 01 — &t — t1) + no, &, &2)
(4.13a) — Ty (@ — &t —t1), 21 — &t — 1), &1, 62)
=(z1 — &it, o1 — §1(t — 1) — Eata)
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Q (x4, &) (x4, &)

(x-&(t-,),&,)

Q)

(x,-&t,&) (x-&t,€)

(X1' §1 (t't1)“§2t1) EZ)
(X,-&,(t-t))+no—§E,t,, &)

FIGURE 6.

as follows by direct inspection. We use the graphical representation in Fig.
6 to visualize this convergence for the reader.

At the instant t—t;, we adjoin a second particle in ingoing configuration
to the original particle at (z1,£;). As we move further back in time, the
free motion of the original particle is unaffected.

If we adjoin this second particle such that the triple (n,&;,§2) is in
outgoing configuration, we are in the situation that arises in the gain term
Q°* (because (n,&},&5) is then ingoing). Proceeding as above for Q7+, we
have to study the limit of the expression

(413b) T;tl ($1 - gl(t - tl)axl - gl(t - tl) — no, 61752)

as o \, 0. Consider the graphical representation in Fig. 7.
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Q (x, &) (x, &)

&

(x,-&(t), &)
&’

(x-&(t-1,)-€,'t,, &)
(x,-&,(tt)-no- &, t,,€,) (x,-&,(t-t,)-&t,, &)

(X‘|' §1(t't1 ) _EZ’ t‘! ’ EZ,)

FIGURE 7.

As (—n, &, &) is outgoing if (n, &1, £2) is ingoing, we have to make the
transformation from outgoing to ingoing representations as we go back in
time, and the expression (4.13b) therefore converges to

(1 — &u(t —t1) — &otr, o1 — &t — t1) — €181, 41, 63)-

Summarizing, we write

t
/ dtlS',,(t - tl)QZSa(tl)P(gz) (1‘" 6)
0

- /0 "t / dt / dnn- (€ — &)P?
(77 (77 (@, U (v~ no,&2)))

where y = z — &1 (¢t —11), and we have used the symbol U for the adjoinment
of the particle. As pointed out in the earlier discussion, the argument of

Péz) converges to (z1 — &1t, 21 — &1t — 1) ~ &atq, €1, &2) or to (zy — & (t —
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t1) — &ty — & (t — t1) — &5t1, &L, &5), depending on whether the triple
(n,&1,&2) is in ingoing configuration or not.

Notice that we do not have a choice of the representation of the collision
point in terms of ingoing or outgoing velocities; a representation just arises
automatically, and the correct expression of the limit collision terms follows
from the calculations. By assumption i), we have convergence (pointwise,
and not just almost everywhere for the case n = s = 1) of the integrands
in (4.12). By assumption ii) and the dominated convergence theorem the
convergence in (4.12) follows.

‘We next consider the general case, where n and s are larger than 1.
Unfortunately, as the reader may check, an induction proof is not feasible.
We have no choice but to directly investigate the complicated configuration
arising after repeated application of the operators T, and Q,. This inves-
tigation leads to obvious notational problems, and the temptation is there
to just say that the argument for n = s = 1 extends to arbitrary n and s.
However, as we show for a counterexample of a discrete velocity model in
Appendix 4.C, this reasoning would be extremely dangerous! It is in fact
important to verify the convergence spelled out in (4.10) explicitly, because
it actually fails for the discrete velocity case.

First, observe that as N — 00, 0 — 0 with No? = a,

(N=38)(N—-5-1)...(N —s—n)a®" — a™

Also,
To—"TZS JEEN T(;“Tzs

except on a set of measure zero. The exceptional set is formed by those phase
points for which, in the free-flow evolution, two point particles occupy the
same spot at the same time, a set that is clearly of measure zero.

Therefore, as we adjoin a particle with coordinates zfy‘l (the index s
here reminds us that we start with the phase point z*, the index 1 that the
particle is the first of n to be adjoined, and the index k; € {1,...,s} tells
us who is the collision partner), for almost all choices of £,.1, the point

- —(t1—t k
™ (T (=) 25 zs,ll) ,
T1 < t1, will converge to
™ (Tétl”t)zs U zfvll)

or to
Ty ™J (Tét"t)z’3 U th) .

Here, J is the collision transformation changing £, £,41 into £, &, ,, £ being

the velocity of the kith particle in the configuration Tétl_t) z°. Which of
the two limits will apply depends, as before, on whether the particle zf}l
was added in ingoing or outgoing configuration.
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The typical phase point occurring in the argument of Pé”m on the
left-hand side of (4.10) is of the form

Ys+n — T—tn
o
(zf;;, U Ty (tn-1=tn) (zf;;jl U T, Enm2tn-t) T;(t‘tl)z") . ) ,
which converges to
Yot =Tyt g

(o Uy i mes (Gt Ty (it e (i) )

for almost all choices of &;11,...,€s+n. Here, 7, is 0 or 1, depending on
whether zfg. is adjoined in ingoing configuration or not. Note that zfjr
depends on o.

Consider now a typical integrand in (4.10). If we delete for the moment
the indices in the collision operators indicating the number of particles but
keep track of whether a collision configuration is ingoing or outgoing, we

get terms like

(4.14) So(t —t1)Q%" Sy (t1 — t2) ... Q7 S, (tn) Pi(2°%;0)
where v; = + or —. To prove the convergence of (4.14) to
(4.15) So(t — t1)Q3 So(t1 — t2) ... Q"™ So(tn) f°(2%;0),

we observe that (4.14) and (4.15) contain integrals with respect to veloc-
ities and impact parameters of P2*"(Y**+";0) and f**"(Yg™;0). As the
convergence of P:+™(Y*+t™;0) to f*+*(Yy1";0) a.e. is already proved, the
convergence of (4.14) to (4.15) will follow from the dominated convergence
theorem if we can find a suitable upper bound on the P:*" (uniform in o
resp. V). This bound should decay fast enough at infinity for large velocities
in order to compensate for the unbounded cross section. The construction
of this bound is what we do in step 3.

Remark and Warning. The reasoning from step 1 is not applicable to dis-
crete velocity models because we have only a finite set of velocities to choose
from; therefore, none of them can be excluded by a measure-zero argument.
We demonstrate in Appendix 4.C that the convergence proof fails.

The preceding discussion also shows why the convergence of P,(-,t) to
f(-,t) is only almost everywhere at every level. Consider the first term in
either series: We have

lim (8,0 = So()f§”) (=) = 0

only if
P (T782%) — £ (Tgt2®) — 0,
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and this is, for ¢ > 0, in general violated on the set of phase points z*° for
which there is a 7 € (0,t) such that two particles in T [ 2° occupy the same

spot; for such phase points, T, *2* does simply not converge to Ty, St z° as
o — 0.

Step 2. In step 1, we have established that the series solution to the BBGGY
hierarchy, say Y. a2, and the (formal) series solution to the Boltzmann

hierarchy (say > a,), satisfy a2 — a, as ¢ — 0 almost everywhere for
each n. We will show that for short times Y |a,| converges and that

Y — Y
as ¢ — 0. This is certainly true if we can find a sequence {b,}nen such
that 0 < |ag| < by, 0 < |an| < by, and 3 b, < co (see Problem 2).

Step 3. Finding the sequence {b,} is the key technical step in the proof.
We introduce the following norm:

”P(s)“ﬁ = sup expeﬁEsIP(S)(-Tl--~$sa§1---§s)[

Try...Ty ,51...53

1 8
B,=32 ¢
j=1

is the energy of the configuration. Then

where

Q7 Pt 2y .. 25,61 6)| < CQZ/dﬁsH (€51 + 1Es1l)
i=1
X [P geErn,

Therefore, for 3’ < 3

Q21 Pl < Call POVl [ deuyreE
S (161 + e e FnaemO=HOE,
j=1

Using the estimates

- . _(ﬁ_,@,)Es Ci
2tk =977

i=1

(see Problem 3) and

8 E 2 C
|€sr1le” 281 < —=s,
Z 8 \/[_3

j=1
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we conclude that

C
@16) QP < Pl (o 2).

On the other hand, by energy conservation

I185() PP lg < IP]s,

such that

(4.17) 1S5 (t — t1)Q° So (t1 — 12)Q7 ... So(tn) PC¥™ |5
' < (s+n)"CmA(B, B)"| P g,

where

A(B.5) = max (82, - )

In order to derive estimate (4.17), we have applied (4.16) to each of the
Q°s appearing in the left-hand side of (4.17), with 8 — 3’ replaced by @—:—LE
The term Q7 , makes the contribution

Ca [+/(s+kn s+k ,
(ﬂ')%<\/ﬂ?f +\/B_><CaA(ﬂﬂ)(s+n

From assumption ii) we get

1Pl < Cb**7,

and finally we employ the identity

tn1 n
[ o

1P @)llp <6 g(s +n)"(Cadb)™

n>0

to arrive at

At this point, recall the Stirling formula for n > 1
n! = v2mn (g)ne"g%ﬂ, 0<0(n)<1,

and s
(s+n)" <n™(1+ ;l—)" <n"e’,
which lead us to the final estimate

(4.18) PO (2%,1) < ePF+(C)* Y " (CaAb)™.

n>0
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Thus we can bound the series solution of the BBGKY hierarchy by a geo-
metric series, which converges if ¢ is small enough.

Exactly the same estimates apply to the Boltzmann hierarchy. In par-
ticular, it follows that the series solution of the Boltzmann hierarchy is
bounded by the right-hand side of (4.18). This completes step 3 of our
proof.

Step 4. Factorization, Propagation of Chaos, and Uniqueness. The series we
used to construct a mild solution of the Boltzmann hierarchy is determined
completely by the initial data, and therefore this solution is determined
uniquely by the data. Now assume that fés)(zs) =I1;_; fo(zi, &), and that
f(z,&,t) is a (mild) solution of the Boltzmann equation to the initial value
fo, i.e.,

F(@.6,1) = So() folz, €) + /O Solt — 1)(QF) (2, &, t2)dts.

Substitute this formula for f(-,¢) in the integral, and repeat this procedure
recursively. The result is exactly the series we used to solve the first equa-
tion in the Boltzmann hierarchy. However, we just proved that this series
converges! In other words, we proved that this series gives us a mild solution
of the Boltzmann equation, f(:,t).

Now, we know (from Chapter 2) that the tensor products

FO(z,1) =TI, ®F (zs, &, t)

then give a solution of the Boltzmann hierarchy in mild form; for f () (22,1),
we have

(@19)  Z[S(-0f90] = [so-n@f ] o).

By applying the same procedure of a formal series solution to (4.19), we
see that this series is algebraically the same as the right-hand side of the
solution series for f (8)(2%,t); it follows that both series converge and that
&) (2%,t) = f(2°,1), i.e., we have shown that f(*) factorizes and that chaos
propagates.

Uniqueness of solutions of the Boltzmann hierarchy is easily proved
along the lines of the estimates of step 3. We leave the details of this
uniqueness proof to the reader. More on the uniqueness of solutions of
the Boltzmann hierarchy can be found in Section 4.8. This completes the
proof of Theorem 4.4.1. 0

Remarks. The reason we end up with a geometrically convergent series
in the proof is that we had to use the integral

(4.20) / dty .. / "y =2
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in combination with the counting factor

s+n

zs:...z =s(s+1)...(s+n) = (S*;")’ =n!<s+") <nl.2otm,

. : S
J1=1 Jjn=1

The number of particles increases in each step of the iteration as a con-
sequence of the bilinearity of the Boltzmann collision operator. We conclude
that our present method cannot possibly give a better than local result for
general initial values. This is also true for any other fully nonlinear model
equation.

In fact, we made no effort in the proof to optimize the convergence
time with respect to « or ||fo||L~. However, it is transparent from (4.18)
that every convergence time will only be a fraction of a, which in itself
is proportional to the inverse of the mean free time between collisions. In
other words, our validation applies only to a fraction of the average time
between two collisions suffered by a particle.

Notice that otherwise our convergence time depends only on || fo| Lo
This means that the initial distribution need not be normalized. As a con-
sequence, our result also applies to the physically relevant case of a gas in
all of R3, without any decay at infinity with respect to the spatial variable.
In this case, one has to reformulate the problem in terms of “rescaled” cor-
relation functions (defined in Section 4.6) expressing the mass density and
the mass correlations.

A final comment. We already mentioned that the Lanford result that
we formulated and proved in this section is unsatisfactory, because its valid-
ity time is unsatisfactorily short on physically relevant scales. On the other
hand, the conceptual impact of the result was remarkable and persists; we
have proved that a rigorous transition from reversible to irreversible dynam-
ics is possible, and this is significant even if the time interval in question is
extremely short. .

It has often been questioned whether the Boltzmann equation could at
all be derived from Hamiltonian dynamics. When Lanford’s theorem was
presented and discussed without detailed proofs almost twenty years ago,
the lack of detail left many doubters questioning the result. We hope that
the lengthy and detailed exposition which we have given to this subject here
will dissipate any remaining doubts about the completeness and relevance
of the result.

Problems

1. By representing all collision points in terms of their outgoing configu-
ration, give the formal derivation of equation (4.4) with a minus sign
in front of the collision term.

Prove the statement in step 2.

3. Prove, for r; > 0, that

N
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]
- s 2 S
E Ti€ QZ«;=1T" SC‘}—
: (8%
i=1

Hint: first prove that the left-hand side is maximized when r; = ry =

4. Prove (4.20).
5. Prove that any solution of the Boltzmann hierarchy satisfying a bound-
edness condition
f(s)('»t) < b

is unique in this class.

4.5 Validity of the Boltzmann Equation for a Rare
Cloud of Gas in the Vacuum

As we already mentioned, the method discussed in the previous section can
only give a local result for general initial values. However, for suitable initial
data one can prove global validity by replacing the smallness condition on
time by a largeness condition on the mean free path; consider, for example,
hard-sphere dynamics in all of ®3 and initial data that decay sufficiently
fast at infinity, a situation we address in this section.

First, we note that steps 1, 2, and 4 from the proof in the previous
section are completely general; therefore, a global result will be proved if we
can control the series solution for the BBGKY and Boltzmann hierarchies
globally.

As before, we assume a factorizing initial value

(=) = I fo(ei, &)
i=1

and the Boltzmann-Grad limit N — 00, 0 — 0, No? = .
In addition, suppose that

i) the P{*)(-,0) are continuous on (R? x #3)2" and
lim P)(.,0) = f{¥
N—ooo
uniformly on compact subsets of (R3 x §R3);’0.

ii) there are constants Gy > 0, ¢ > 0 and b > 0 such that

sup (Pf)(z“',()) exp (ﬁo zs:(éf + w?))) < b’

i=1

Under these hypotheses, we have the following.
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(4.5.1) Theorem. Suppose that i) and i) hold. Then, if b- a is sufficiently
small, the series solution P,(-,t) of the BBGKY hierarchy converges for all
t > 0 in the Boltzmann—Grad limit almost everywhere to the series solution
f(-,t) of the Boltzmann hierarchy. The latter factorizes as

f(s)(zs,t) = Hf(xivfivt)
i=1

and f is a mild global solution of the Boltzmann equation for the initial
value fo. Moreover, Pés) and f® satisfy the estimates

0 < P9 (2°,t) < (c-b)* exp(—fo - I(Tt2°%))
(where I(2°) =37 22, see Lemma 4.2.3),
0 < f(2,4t) < (c- b) exp (~folz - t€)*).

The constant ¢ is independent of N and s.

Proof. As mentioned above, we only have to do step 3 of the proof of
Theorem 4.4.1. Consider

(5.1)  So(t—t1)IQ7ISo(tr — t2) ... So(tn-1 — t2)|Q%|S6 (ta) Py (2°)

where |Q°| denotes the collision operator with n - (§ — ;) replaced by
In - (& — &)| (i.e., we give the “loss” term in the collision operator the
“wrong” sign). The operator S,(t)|Qs|S+(7) is then a monotone operator,
i.e., Sy(t)|Qs|S-(7)P increases with P, and so (5.1) is an upper bound for
the nth term in the series expansion.

Let r =s+n—1,ie.,r+1=s+mn, and focus on the last part of (5.1):
(5.2)

So(tn-1— tn)‘QU’Sa(tn)P€+s(zs)

=YW =0 [ [ = €l [So )BT (V7 U i) dndrs
j=1

n—tn_1

with Y™ = (y1...9r, ... 7) = T 2", zjr = (y; + no,&41), and,

accordingly,

Y"Uzjr=Wi- - -Yn¥j +00,01 ... 0, Erg1)-
Recalling I(2°) = >_;_, 2, we use Lemma 4.3.2 to estimate
T (Y™ Uzr)) 2 I(Tg (...))
(5.3) =1 (Ty "™ (Ter~"12")) + (yj + no — taér1)”

>1 (To—t""lzr) + (y; +no — tn§r+1)2.

Furthermore, by energy conservation,
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E(2") = E(T;2"),
and using this and (5.3) we find
PIHL (Tt (T —tn=127 U z5,))
(5.4) < e b exp (—fo€lyy) - exp (=BoE(2"))
-exp (—Bo(y; + no — tr&r1)?) ‘eXP( ﬂol( in T)) .

Proceeding from here as in the previous section, we have (by using energy
conservation again)

T

S (sl +leraah e (<286 ) onp (-2 )

(5.5) =1
< C(r+/rv/n)
<C(s+n).

Here, the constant C depends on (3. Also, of course, (N — r)o? < a, and
ﬁnally

SHP//GXP< §r+1) exp(—Bo(y; + no — tr41)?) dndér gy < 158

(see Problem 1).
Now, insert (5.4-6) into (5.2). We obtain an estimate
+n n-—
. <C.-q-bstr. i . -
(5.7) <C-a-b s exp( Bo
If we substitute (5.7) into (5.1), the steps (5.4-6) can be repeated recur-
sively. Ultimately, we arrive at an estimate

[So(tn-1— tn)[QUISv(tn)P()s+n](zr)
E(zs+n—1))
{So(tn-1) exp (—BoI(z**""1))} .
So'(t - tl)lQalSa(tl - t2) s So(tn—l - tn)lQoiSa'(tn)P(,)n‘}_s(zs)

n

<C™-a™ bt (s 4+ n)" IiH (1 +t3>] - So(t) (exp [-Bol(2")])

or

P (2% t) < b° Z b*-C"-a™ - (s+n)"

n>0

[

) b . dty - So(t) (exp [~ BoI (=)
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Finally, we observe that

¢ ot 2 1 c
5.8 dtn...dt < =,
(58) /0 /0 311 1+ =l

and by again using Stirling’s formula, we get an estimate

(5.9) PO, <ty C™ (ba)"- (S : ")n - So(t)(exp(—Bol (2°)))

n>0

[the constant C here is not the same as in (5.8)]. If (b- a) is small enough,
the right hand side of (5.9) is the convergent majorant series Y b, we set
out to find. Also, we have an estimate

PO(2%,8) < (b- o) (exp(~Bol(T5 '2°))),

from which we can conclude asymptotic dispersion of the gas cloud.

The same argument, with some simplifications, can be used to obtain
a bound for the series solution of the Boltzmann hierarchy. This completes
the proof of Theorem 4.5.1. |

Problems

1. Prove the estimate (5.6).
2. Prove the estimate (5.8).

4.6 Interpretation

We now discuss the question whether or not the Boltzmann equation ac-
tually yields any information about the time evolution of individual phase
points of an N-particle gas. We will see that the answer to this is yes, and
Theorem 4.4.1 from the previous section delivers the necessary result.

Suppose a gas of N hard spheres is confined to a domain A, with
reflecting boundary conditions. Also, assume that we have a solution of the
Boltzmann equation, t — f(-,t), to some initial value fo.

We ask: For a gas of N hard spheres, in what sense does f(-,t) de-
scribe the state at time t? The limit we have to investigate is, again, the
Boltzmann-Grad limit N — oo, 0 — 0, No? — a.

For any rectangular parallelepiped A C A x R3 and a phase point
z = (.’131...1121\(, {1 ...fN), let

N
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be the fraction of particles in A. As N — 0o, No? — a, we expect this
fraction at time t to be well represented by

/ f(@, € 1) do dé.
A

Here, “well represented” means “statistically close with respect to a se-
quence of probability measures in phase space.” This sequence is, for any
t, given by solving the Liouville equation. For convenience, we will refer in
this section to such a sequence as “approximating sequence for f.” The ne-
cessity for a statistical link between Fa(2) and [, f(z, &, t) dz d€ is clear,
because there is no a priori relationship between the two.

(4.6.1) Definition. A sequence of symmetric probability measures {u™N }nen
on AN x R3N s called an approzimating sequence for a given probability
density f on A x R3 if for each rectangular parallelepiped A C A x R® and
for each € > 0

(6.1) Nll_{noo p {2 |[Fa(z) — /f(m, & dz dél >e€ ) =0.
A

Let w, = £ SN 8(z..¢.), then

(Fae) = [ @, dodel = | [ dw. - [ 1z, €) do ael.
A A A

In this formulation, we see that the statement “{u"} is an approximating
sequence” means that as N — oo, the probability measures u" concen-
trate on those phase points for which the discrete probability measures
w, are well approximated by f dr d§ in the weak-*-topology on the space
of measures. Suppose that every uV is absolutely continuous, with density
P{™ € L1 (AN x R3N). The time evolution of P{™ is given by the Liouville
equation

d

= [PW) (T, t)] =0, PM(z0) = PN (2).
Again Pés) will denote the s-particle distribution function.

(4.6.2) Lemma.

2) / Fa(z) du® (z) = / PO (z, £) da dc.
A

b) / (Fa@)? du™ () = 3 [ PO(w, €) dod+ 2 = / [ PO s
A AA
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Proof. a) is left to the reader. To show b) just calculate

N N
/(FA(Z))2 dp (2) = TV%ZZ/XA(% &) - xa(zj, &) du® (2)

i=1 j=1

1 N(N -1
= [xaten &) 4@ + TEZY [xa, ) xator, &) du¥ 2
(by symmetry) and use the definition of P(!) and P, 0

Remark. By a) [, PM(z, £) dr d is the expected fraction of particles in
A, and by a) and b)

N-1 1
—— [ | PP(2?) de* = E (Fa(2))* - +E (Fa(2))
N A/! N

(Fa(2) is here interpreted as a random variable, with u” the relevant prob-
ability measure). We see that P(!) and P(?) determine the mean values and
fluctuations of the occupation numbers F(z).

(4.6.3) Lemma. {u"N}nen is an approzimating sequence for f if and only
if
a) Jlim PW(z, £) dz dg = f(z, §) do dg

and
b) lim P®(2?)dz? = f @ f dz?
N-—oo

weak—* in the sense of measures.

Proof. Suppose that {u"}nen is an approximating sequence. Let A be
some rectangular parallelepiped; then by Lemma 4.6.2

/ P (z, ) do dé - / f(, €) do dt
A A

=/ lFA(Z)-/f(:L §) dz df} du™ (2),
A

and the last integral goes to 0 as N — oo because {u" } is an approximating
sequence.

To show that [, . . P@)(22) dz? — Ja,xa, f® f d2? for all rectan-
gular parallelepipeds, we can (by symmetry of P(?) and f® f) assume that
A; = Ay = A (see Problem 1). Then, by Lemma 4.6.2,
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/P(2)(z2)dz2~ / f®fds?

AxA AxXA

- /[NN_—IFg(z) - ( / f®fdz2)] A (2) — ]—v—-l:TZP(l) dz d.

AxXA

The right-hand side of this identity goes to zero as N — oo because
forall e > 0 uN{z; lFZ(z)—(fAfda:dg)z[ >e} — 0as N — oo, and
7 Ja P dz dé — 0. Conversely, suppose that a) and b) hold. Then

pN {2 lFA(Z)-—/fdm d¢? > e 3 < é/]FA(z)~/f dz d¢)? dul (2)
A A

1
=5 /Fi(z) du® (2) - 2/ Fa(2) duN(z)/f de d€ + / f®fds?
A AxA
—0
as N — oo, by Lemma 4.6.2. This completes the proof. ]

Lemma 4.6.3 shows that factorization (in the limit N — oco) of the
2-particle distribution function P(?) is necessary for the u™ to be an ap-
proximating sequence of f. In other words, the concept of “approximating
sequence” implicitly contains the concept of “molecular chaos.”

We give a reformulation of Theorem 4.5.1 in terms of the concept of
“agpproximating sequence.” Theorem 4.4.1 can be rephrased similarly.

(4.5.1) Theorem. (reformulated) Assume the hypotheses of Theorem 4.5.1
(in particular, the sequence of probability measures pl) = PéN) dz is an ap-
prozimating sequence for fo). Then, if b-« is sufficiently small, the Cauchy
problem for the Boltzmann equation has a unique global solution f(-,t) with
initial value fo, and the sequence of measures pul® = Pt(N) dz, where Pt(N)
solves the Liouville equation with initial value PéN), s an approzimating
sequence for f(-,t) for allt > 0.

Proof. This follows from the previous formulation of the theorem and

Lemma 4.5.2. (The weak-* convergence in the lemma follows from the
a.e. convergence and the Lebesgue dominated convergence theorem.) o

Remark. In this formulation, it is clear that the validity of the Boltzmann
equation is given in a statistical sense; as N — 0o, ¢ — 0 such that No? =
o, the fraction of particles in a cell A at time t (F5(2)) is, in measure with
respect to PN)(-,t) dz, well approximated by S fz, & t) dz dE.
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The validity result can also be recast as a “law of large numbers”: Let
uy = PéN) dz satisfy hypotheses i) and ii); then

il {5 |Fa(e) - [ f(a 6,0 dade > ef —0.
A
But the left-hand side equals

Y {2 |Fa(T'z) - / f(z, € ) du de| > €
A

N 1
= Mo 25 '—— dchz(l', §) - f(iL‘, 57 t) dz d&l > €0,
v o]

and we see that the fraction of particles in A at time ¢ is, with respect to the
sequence of probability measures p{), indeed better and better represented
by f A fCyt).

The interpretation would be particularly appealing if we would choose
py = Hfil folzi, &) dz, but this is impossible because of the exclusion
principle (particles cannot overlap) and the continuity requirement on uy
along trajectories. We have to redefine and renormalize pdY such as to be
consistent with the physical constraint. The derived factorization of uy
only emerges in the strong limit given by i) in Theorem 4.4.1.

A final remark on the normalization is in order. In many texts, corre-
lation functions p(®)(2*, t) are defined by

p(l)(flfl, 51, t) = N/P(N)(Z, t) dZN_l

PP (22, t) = N(N - 1)/P(N)(z, t) dzN 2

PP, t)=N...(N -5+ 1)/P(N)(z, t) dzN -2,

Ja o) dzy dé; is then the expected value of the random variable Ny =
N - Fa(z), i-e., the mean number of particles in A. Similarly,

’/A..‘/Ap(s)(zs) dz*

is the mean value of No(Na — 1)...(Na — s +1). The BBGKY hierarchy
can be formulated and studied in terms of the p(*)(2(%), t), but rescaling
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- ul > s* () =s* (o)
Liouville eq. s*
(reversible)

* A v B

fo > 71, > S¥*T.f,
Boltzmann eq.

FIGURE 8.

is necessary because p{®) — 0o as N — 0o. The usual rescaling is done by
setting

fO, ) = N7p9 (2%, 1),

It is easily seen that in the Boltzmann-Grad limit limy_,., f(*)(2°, t) and
limy_, oo P(*)(2%, t) are the same. The formulation of the BBGKY hierarchy
for the f(*) is sometimes preferred over the form for the P(®), because the
collision operators, as acting on f(**1) carry a factor No? (rather than
(N — s)g? for P(s+D),

Problem
1. Let A;, Ay be two disjoint subsets of A x R3. Show that (4A; x Az) U
(A2 X Al) = (Al U Az) X (Al U Ag)\(Al X Al)\(Ag X A2)

4.7 The Emergence of Irreversibility

The loss of reversibility (in the mechanical sense) is now easily explained.
Recall (4.2.3): TtSTtz = Sz for all z € I', t € R. The involutive operation
S of velocity inversion induces an (involutive) operator S* : uV — S*u/
by $*u? = uNoS. Also, if T3 fo(z, £) = f(x, £, t) is a solution of the Boltz-
mann equation, let (S**T; fo)(z, €) = f(x, —¢, t). Consider the diagram in
Fig. 8.
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S*(#'N) > (S*(ﬂ,glOT-t))OT_t = S*y,gl

S**Tito - F,5%* Ty, s*41,

I v A

FIGURE 9.

Here, the horizontal arrows in part A of the diagram denote the indi-
cated time evolutions; the vertical arrows indicate the convergences (in the
Boltzmann-Grad limit) from Theorem 4.4.1: the “s” stands for the strong
convergence of P(®) — []7_, ®fo(:, &) assumed initially, and the “w” for
the weaker convergence at time ¢t > 0 (for ¢ sufficiently small) given in the
assertion of Theorem 4.4.1 (a.e. P()(-,t) — [[;_; ®f (i, &, t), s > 2); in
other words, the left-hand side of the diagram is just a concise reformulation
of the theorem.

Part B of the diagram tells us what happens if we reverse velocities: of
course, the convergence “w” is preserved in this operation. Suppose that we
could actually “save” the “s”-convergence in column II (and hence III) of
the diagram (we already know that the series approach from Section 4 will
not permit this, but let us disregard this for now). The other assumptions
made for Theorem 4.4.1 can be seen to remain true anyway.

We could then use Theorem 4.4.1 once more to extend the diagram to
the right as indicated in Fig. 9.

Because both s- and w-limits are unique, it would follow that

(7.1) 5** fo = T,S**T; fo.
But the H-theorem implies that
H(TtS**tho) < H(S**tho)
= H(Tfo) < H(fo)
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unless fo is the equilibrium solution, i.e., (7.1) is in general impossible. We
see that the loss in convergence quality is actually necessary to explain the
irreversible behavior of the Boltzmann equation.

Conversely, this loss even explains why the decrease of the H-functional
is possible.

Let h(z) = z-lnz forz>0

—lo for x = 0.
We define H-functionals H*(P(®)) by H*(P(®)) =1 [h o P()(2%) d2°.
First, note that

N
(7.2) HY([[ ®fol=i, &)) = H(fo).

=1

Suppose next that we have PéN) — fo (in the sense of the diagram, i.e.,
8
PéN) and fp satisfy the hypotheses of Theorem 4.4.1) and that in addition

(7.3) HY (PN — H(fo)

as N — oo. In view of (7.2), (7.3) can be interpreted in the sense that
PéN) “almost factorizes” sufficiently fast as N — oo (whether such “rapid”
factorization is physically meaningful is an interesting question, but not of
importance for our current goal).

We can set up the diagram in Fig. 10.

and conclude that

(7.4) liminfy oo HY (PUM (-, 1)) > H(f(-, 1)),

with strict inequality in general. The key observation here is that the effect
of collisions and the corresponding loss of convergence quality and factor-
ization will inevitably destroy the convergence (7.3) at later times.

We summarize the relations between the H*(P()(-,t)) and H(f(-,t))
in the following theorem.

(4.7.1) Theorem. Suppose that PN) is a symmetric probability density on
phase space and that P®) are the s-particle density distribution functions
associated with P(N). Then

a) HY(PW) < HN(PM) with equality if and only if
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HN(PO(N)) — HN(P(N)(-,t))
Liouville's
Theorem
N-— 0O
H(fo) > H(f(-.t)

H- Theorem

FIGURE 10.

N
p(N)(z) = HP(I)(-’Dz‘, &)

i=1
for almost all z.
b) if PN)—f as N — oo in the sense that for fized s € N
w
|p(3)(28)| < Cbee P Yoo @+ed)

and

P(S)(zs) - ﬁf(zi) E‘z) a.e. as N — 0,

i=1
then for every s H*(P®)) — H(f) as N — oo, but in general
liminf HY(PM)) > H(f).
N—oo

Proof. The very last statement was already observed in (7.4). To prove a)
note that for z,y >0,z —y > yln % (Set the right-hand side equal to zero
for y = 0 and equal to —oo for y > 0, z =0.)

Therefore,
N
0= / ((H PO (g, gi)) —P<N>(z)> dz
i=1

N
[1 PO (s, &)
> P(N)(z) In &=L

— M) B dz,
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ie., [RoPWM)(2) dz > N-H'(PW). Clearly, the inequality is strict exactly
if PN) does not factorize.

The remaining part of b) follows from the dominated convergence the-
orem. The almost everywhere convergence of P(9)(z*) to [[;_; f(z:,&) im-
plies the almost everywhere convergence of ho P(®) to ho[];_, f(zi,&). To
find a common integrable upper bound, let

RV for0<z<1
g($)—{1+xlnm for x > 1,

and observe that
lzlnz| < g(x).
Therefore,
(ko P&)(2°))] < (g0 PY)(2%),

and from the monotonicity of g we have
— 2242
(g0 P®))(2°) < g(Cb%e BY( i+eh),

and the function on the right is the common integrable upper bound. O

Remarks

1. Boltzmann3® already pointed out that the entropies H®(t) associated
with the s-particle distribution functions would not have to decrease
as long as N was kept fixed (for s = N, of course, H" (t) is constant,
but for s < N, H*(t) could possibly undergo oscillations), but would
approach the strictly decreasing H(t) as N — oo. The proof of the last
theorem verifies this.

2. The function h(z) = X{z>0} - T - Inz arises quite naturally in this
context, because, up to a possible factor, it is the only continuous
function ¢ : Ry — R that is differentiable for x > 0, such that

/apOP(l)(.’I}, £) dmdgg—]%/.../cpoP(N)(z)dz (7.5)

for all N and for all normalized symmetric PY) ¢ LY for which
the integrals on the right of (7.5) exist, with equality if P(V)(z) =
Hfil P (z;, &). We leave the proof as an exercise for the reader (see
Problem 1).

3. The H-functional has a suggestive physical interpretation, also dis-
covered by Boltzmann (see also Lanford °). Let A,,...A; be a fi-
nite number of nonoverlapping cells in A x %3, and let A\5(A4;) be the
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volume of A; (assumed finite). For a given (large) N, choose inte-
gers N;...N; such that >7_, N; = N, and ask how much phase-
space volume Vy in (A x %)V is available to phase points z with
Na,(2)(=N - F Fa; (2)) = N;. A little combinatorics and Stirling’s for-
mula (N;! ~ N}V ‘e~ N +) shows that this volume is given by

; j N;/N
TNLHW(&)!”‘“{H (%[’\6(‘4")0 }

H Nz! i=1 i=1
=1

N

Therefore, for large N,

'1\7 :5; (Nuﬁ(lA)i)

Now, if we formally replace I—Vﬁ by [ A, f(z,€) (where f is the density
distribution function of the gas), the last sum becomes

[f

Jj A,
_;(!f>1“ e |

and this turns (formally) into —H(f) if we choose the A; as a partition
of A x R3 and send the mesh of this partition to zero.

The decrease of H(f) with time can therefore be interpreted as motion
of the system from regions of lower phase-space volume to (more likely)
regions with much larger volume. [Our formal argument shows that Vy ~

exp(—N H(f)) ]

Problem

1. Prove the assertion made in Remark 2.
Hint: Consider P (z,¢) = (%)6 Wie (z, 5) where W(e) is a cube of
volume €® in A x R3 and let PNV (2) = [[v, PW(x;, &).

4.8 More on the Boltzmann Hierarchy

We discuss now two related questions from Section 4.4: What happens if
the P’ converge, at time zero, to a nonfactorizing state? Is it possible to
give meaning to the Boltzmann hierarchy even for nonfactorizing solutions?

To discuss the first question, suppose that {fs}32, is a family of dis-
tribution densities, i.e., they satisfy
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and assume that
lim Py, = f
o—0 ’

for all s, uniformly on compact sets in (R3 x §R3):O (see the hypotheses for

Theorem 4.4.1). Suppose also that condition ii) there is verified. Then the
same arguments used in Sections 4.4 and 4.5 are applicable to prove (under
suitable smallness conditions) the convergence of P?(t) to f,(t) a.e., where
fs(t), s=1,...,00 is a series solution of the Boltzmann hierarchy.

We want to investigate the meaning of a solution to the Boltzmann
hierarchy for general nonfactorizing states {f5(¢)}52,.

Consider first the following simple example. Let

(8.1) Mg, (§) = exp(—Bi€?),

1
(27[' ﬂ,)%
i = 1,2 be two Maxwellians at inverse temperatures 8; and B2, B1 # (5.
Then

(8.2) gs(€r... &) = AH Mg, (&) + (1)) HMﬁz (&)

i=1 =1

for A € (0,1) is a nonfactorizing state satisfying the stationary Boltzmann
hierarchy

(83) Qs9s = 0; Z giamigs =0
=1

(this is obvious, because the hierarchy is linear).

The state expressed by equation (8.2) describes a physical situation
in which a gas is in thermal equilibrium at inverse temperature 3; with
probability A and in thermal equilibrium at inverse temperature (2 with
probability 1 — A. The relevance and effective feasibility of states of this
type in rarefied gas dynamics is not clear. However, from a mathematical
point of view, such mixtures of states make pefect sense, and they arise
quite naturally in the discussion of the validation of the Boltzmann equa-
tion. Therefore, it seems worthwhile to continue a deeper analysis of the
Boltzmann hierarchy.

The previous example suggests that solutions of the Boltzmann hier-
archy descibe mixtures of solutions of the Boltzmann equation, or, in other
words, “statistical solutions” of the Boltzmann equation. This is indeed
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true, as pointed out by H. Spohn ?2. We explain the argument, beginning
with the concept of statistical solutions in the case of an ordinary differen-
tial system of equations.

Let T3 : 2 — {2 be a one-parameter group of transformations on
a differential manifold {2, generated by a vector field F, and p a Borel
probability measure on {2 that represents the indeterminacy of the initial
value. A statistical solution of the system

(8.4) & = F(z)
is a map t — y; such that
(85) pe(®) = p(® o T-s)

for all smooth test functions @ on {2, where
(36) u(@) = [ 8(z)du(o).
The measure function u, then satisfies

(87) 9 (@) = pu (V8- F)

To generalize these considerations to the Boltzmann equation, set £2° =
L} and let p be a probability measure on 2. u is assumed to be a Borel
measure with respect to the topology induced by the weak convergence of
measures. We denote by £2 the closure of £2° with respect to this topology.
The Boltzmann vector field is given by

(8.8) F(f) =—£-0.f +Q(f, /),

f € £2°. Statistical solutions associated with the Boltzmann equation take
the form

(59 @) = (5716 0. + QU ),

where 2 5 7 is the functional derivative of the “smooth” functional ¢ on £2°,

seen as a linear operator acting on [—€ - 0, f + Q(f, f)]. The information
content of equation (8.9) depends on which class of “good” functionals &,
for which (8.9) has to be true, is chosen. A natural choice is the algebraic
closure of the functionals of the form

(8.10) &(f)= [] f=9,
(z,£)€ez

i.e., the factorized functionals. As

(8.11) ‘W f) > I fwn

(z.8)€z (y,m)#(x:6)
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equation (8.9) reduces to

Cu( TI f@o)=-u( X I fwne 0.5we)
(8.12) (z,6)€2 (z,6)€z (y,m)#(x,€)
+m( Y. I f@me Hi8).
(z,£)€2 (y,m#(z:€)

Observe now that defining fs(t) by

(8.13) .mw=/muﬂﬂﬂ

we get a family of distribution densities satisfying i), ii), and iii). Moreover,
(8.12) reduces to the Boltzmann hierarchy. Thus we see that any statistical
solution of the Boltzmann equation (in the sense of (8.9), with a suitable
family of test functions) induces via formula (8.13) a solution of the Boltz-
mann hierarchy.

The converse is also true. Given a family of distribution densities (sat-
isfying i), ii), and iii)) there exists a Borel measure p on L} for which (8.13)
holds. This is the content of the Hewitt-Savage theorem (see, e.g., Dunford
and Schwarz 7), which explains how a generic state can be decomposed in
terms of pure or factorizing states. Starting now from a solution f,(t) of
the Boltzmann hierarchy, by the Hewitt-Savage theorem we know the exis-
tence of a measure function y;, which is then easily seen to be a statistical
solution of the Boltzmann equation.

The interpretation of the Boltzmann hierarchy is therefore that it de-
scribes the Boltzmann flow whenever there is some indeterminacy with
respect to the initial datum fy. If fp is not known, but only given by a
probability distribution on £2°, say pg, the indeterminacy is still present
at time t and is described by a measure function p; satisfying equation
(8.9), or equivalently, the distribution densities given by (8.13) satisfy the
hierarchy.

We return to the validation problem. If the F§, converge to a non-
factorizing state, this means that the sequences of measure-valued random
variables

1 N
N Z 5(Iiy§i)($’ £)
=1

do not converge (for 4N almost all z) to a single distribution f but to a
random variable f € Li, distributed according to pg. Because we have so
little control about the Boltzmann flow, our discussion on the meaning of
the hierarchy must remain largely formal. However, some natural questions
concerning the hierarchy are easily answered.

Consider

n=/www@
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as the initial datum for the Boltzmann hierarchy. Suppose that pg is con-
centrated on a subset of 2, say ‘Qz for which the Boltzmann flow T; is
well defined. We already know that {2 is not empty, including, for example,
small perturbations of the vacuum (and as we shall see in Chapters 6 and
7, homogeneous data or states sufficiently close to the global Maxwellian
equilibrium).

By defining

falt) = / wo(df) (T )™

we realize that f,(t) is a solution of the Boltzmann hierarchy. Thus the exis-
tence of solutions of the Boltzmann hierarchy follows trivially from support
properties of 1o and by a good control of the Boltzmann flow.

Next we address the question of whether this solution is unique. This
turns out to be a very delicate problem. Consider the following example.
Let

(8.14) {az'(t) =j-aj41(t), 3=1,2,...

a;(0) = b;

be an infinite system of coupled ordinary differential equations. Assume
that 4
b; < 7.

Then arguments similar (actually easier) to those used in Section 4.4 show
the existence of a “unique” solution up to a small time ¢y (inversely pro-
portional to C). This solution is unique in the class of all solutions a;(t)
that satisfy bounds

sup |a;(t)| < €Y
0<t<tq

for some C; < co. However, the solution is not expected to be unique in
a larger class of solutions. In fact, choose a function ¢ — ¢(t) such that

(—(‘%E‘P(t)h:o = 0 and define recursively

| =

djy1 == - d;

<

dlz(p.

Then a;j(t) = d;(t) and a; = 0 are two solutions of the initial value problem
(8.14) with initial data b; = 0. Of course, d;(t) must grow faster than
exponentially in j.

Obviously, our example is not particularly to the point. All of the
probabilistic structure contained in the Boltzmann hierachy is lost. How-
ever, the example shows that it is certainly difficult to prove uniqueness of
the Boltzmann hierarchy in a class of solutions larger than those satisfying
bounds like f; < C4. For such solutions one can try to apply the bootstrap
argument from Section 4.4 to get uniqueness.
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We conclude this section by mentioning two uniqueness results on solu-
tions of the hierarchy for situations close to the equilibrium (see R. Esposito
and M. Pulvirenti 8) and for the spatially homogeneous hierarchy (L. Ark-
eryd, S. Caprino, and N. Ianiro 2).
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Appendix 4.A

More About Hard-Sphere
Dynamics

In this appendix we sketch a proof of Theorem 4.2.1 and discuss properties
of N- particle dynamics that are not directly relevant for the validation
problem but are of some intrinsic interest.

In both the derivation of the BBGKY hierarchy and the problem of
multiple collisions of hard-sphere dynamics, we take advantage of coordi-
nates known as “special flow representation.” We first explain these coor-
dinates in a general context.

Consider a smooth divergence—free vector field F : R* — R", divF =
0, and the flow generated by this field, i.e.,

() = Flu(z)
wo(z) = z.

By the Liouville theorem, this flow preserves Lebesgue measure.

We assume the existence of a relatively compact invariant set A and a
smooth manifold X' of codimension one in R™, such that under the action
of the flow ¢, all the points in A have crossed X' in the past and will do so
again in the future; see Fig. 11.

If dy denotes the surface element on X and n(y) is a normal to X' at
y, we define a measure do(y) on X by

do(y) = |F(y) - n(y)| dy

[the sign of n(y) is of no importance]. Finally, we define a function « :
Y — §R+ by
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FIGURE 11.

a(y) = min{t > 0; p;(y) € Z}.

We refer to a as a “ceiling function” for reasons that will become clear
momentarily.

The one-to—one mapping
(A1) :A—A={(y,t);y€ X, 0<t<a(y)}

defined by
T = p(y),

induces an automorphism
V(A ds) — (A,dodt)

in the sense of the measure spaces. This is a consequence of the Liouville
theorem (see Problem 1). Fig. 12 visualizes the mapping ¥ and explains
why we refer to « as a “ceiling function.”

A major advantage of the special flow representation is that the rep-
resentation of the flow ¢; becomes trivial. If ¥(z) = (y,t) and we define
T:XY — X by Ty = pa(y)y, then
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FIGURE 12.

(y,t+s)ift+s < aly)
U(ps(z)) = Ty,t+s—aly) ift+s—ay) <a(Ty) .

The mapping T : ¥ — X has the property to be o—preserving (see
Problem 2).

We can now prove that the set B of all points crossing X infinitely
many times in a finite time interval has zero Lebesgue measure. To this
end, let

Yp={ye X ia(Tky) < 00}.
k=1
Then
!p(B) = {(yvt); ye 23, 0 <t< a(y)}7

/Bd:v= /;B do(y) /(;a(y) dt:LB do(y)a(y).

and
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For a > 0, consider the set

o)

Zp(a)={y € Tp; Y _ o(T*y) > a}.

k=1

This set must have o —measure zero: Otherwise, by the Poincaré recurrence
theorem (which applies to our situation because o(X) < co and T is mea-
sure preserving), for almost all the points y € X'g, T™y would have to return
to X'g(a) infinitely often, and this would contradict the convergence of the
series Y po, a(T*y). As a consequence o(X5(a)) = 0, hence o(Zg) = 0,
and finally B has Lebesgue measure zero.

We next begin to apply these concepts to hard-sphere dynamics. Con-
sider N hard spheres in a domain A, which, for simplicity, we assume to be
a three-dimensional torus. In order to be able to work in a compact space,
we restrict our attention to the subset 'y of phase space defined as the set
of all phase points having (kinetic) energy less than the fixed value E:

e ={(e1...an,E1...En); i eA,%Zsf < B},

The set I'y will be invariant under the flow (which we still have to con-
struct).

Notice that in this situation we have no collisions with the boundary.
Also, we can safely disregard triple collisions: The set of all phase points for
which at least three particles are in contact is a manifold of codimension
two, and therefore the set of all phase points leading to multiple collisions
in the past or in the future has codimension one and is of measure zero.
Therefore, to construct an almost everywhere defined flow, all we have to
prove is that all phase points leading to infinitely many collisions in a finite
time interval have measure zero.

We prove this by using, as above, the special flow representation and
the Poincaré recurrence theorem. Let

FJ(“) ={z € I'g;|lz; —zj| =0, (xi —z;) - (& — &) > 0(<0)}
and
Tt =G Uy FEO.

X+ and X'~ are those phase points in I'g for which there are two particles
in contact in ingoing or outgoing configuration respectively.
There is a natural mapping

R: ¥y — Xt

that is defined by transforming the ingoing velocities §; ,£; into the out-
going velocities &, {;. All the functions we consider are continuous along
trajectories, such that y € ¥~ and Ry € X7 are essentially the same point
in phase space. If y € X, let a(y) be the first time at which there is a new
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collision. Then ¢q () € X~ (here, ¢ denotes the free flow). We define the
mapping 7' : ¥+ — X~ by

Ty = R 0oy ().

T is not defined on those points leading to no collisions in the future (a(y) =
00), but for such points there is no problem in defining the flow globally for
all future. '

According to the previous definition, we introduce a measure do on X,
whose restriction onto Ff; is

do = d.’El e dwj_1d$j+1 e d.’ENdfl ‘e didyijn,-j . (fz - fj),

where n;; = I(l_zz{—%?l and dy;; is the surface element over the sphere of
radius o centered in z;.
As before, we represent the points of z € I'r that experienced at least
one collision in the past as a pair (y,t), where z = p:(y), y € TT, t < a(y).
In the special flow representation, the Lebesgue measure becomes dodt.
The Poincaré recurrence theorem is applicable to our situation because

o is invariant for the flow. The theorem implies that

oo}

o{y e X7; Za(Tky) < o0} =0,
k=1

and from this we conclude that phase points leading to infinitely many
collisions in a finite time interval must have Lebesgue measure zero.

The cases of reflecting boundary conditions and A = R2 can be treated
similarly. After this construction, the statement of Proposition 4.2.5 is im-
mediate.

The existence of the dynamics of a finite hard-sphere particle system
was first established by Alexander!. Another proof that the set of phase
points leading to infinitely many collisions in finite time has measure zero
was given by Uchiyama 2°. The ideas of the proof presented here are due
to Marchioro et al. 2¢

With the results and methods now at our disposal, we can show yet
another interesting property of a hard-sphere particle system in all space,
namely, the existence of a last collision. Following a proposal by Sinai, L.
Vaserstein 26 proved this result in 1978. The proof we present here is taken
from Refs. 12 and 13.

The collision transformation has yet another useful property. Let

_al) oy 20
“O=or Y= e

where z(t) = Tz, z°(t) = T}z are here the spatial components of the
interacting and free flow phase points at time ¢ respectively.
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(A.1) Lemma.
£(0)

lim €%(t) =

€)1l
if £(0) # 0. The angle between z°(t) and £°(t) = £(0) is decreasing.

Proof. Exercise. Draw a figure!

We now show that e(f) also has a limit as ¢ — oo. To this end, we
investigate the sum of angles through which e(¢) turns in between collisions.
If we abbreviate vary_qe(t) for this sum, then clearly varl_se(t) = 37 _, Yk,
where v, is the angle through which e(t) turns between the kth and the
k + 1st collision instants in [0,T]. However, vy = By — k41, where Sy is
the outgoing angle between z(¢), £(t) at the kth collision instant and a1
the ingoing angle between z(t) and £(t) at the k + 1st collision instant (see
Fig. 13).

with collision

without
collision

origin

FIGURE 13.

Let ¢ be the kth collision instant. One or several collisions occur at
tx, and we denote by £~ (tx); £ (tx) the vectors of pre- and post-collisional
velocities, respectively. By direct inspection, we see that the condition n -
(& — ¢&';) > 0 (for an ingoing collision) is equivalent to

z(ty) - € (tr) < z(te) - €7 (),
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and as ||~ (t)] = |61 (tk)|| (by energy conservation), this implies that
ay, > Bx. Therefore,

J J
var_oe(t) = Y vk = Y (B — 1)
k=0

k=0

J
<D (Br—Brs1) =Bo—Bjr1 < Po <7
k=0
(Bo is the angle between z and £ at time 0, and a1 = (41 is the angle
between « and £ at time T).
‘We have proved the following.

(A.2) Lemma. varl_je(t) < vari®,e’(t) < . In particular, there is an
e € S3N-1 such that lim;_, . e(t) = e.

(A.3) Theorem. If z is such that T*z never leads to a multiple collision for
t > 0, then there is a time t*(2) < 0o such that there are no collisions at
all after t*(z).

Proof. First, we remark that if 7%z leads to infinitely many collisions in a
finite time interval, then there must be a multiple collision at a cluster point
of the collision instant. Hence this situation is ruled out by assumption. By
Lemma 4.2.2 we can choose coordinates such that ) &(t) = Y z;(t) = 0.
The case ||£(0)]] = 0 is trivial, so let us assume that ||{(0)|] # 0. Lemma
4.2.3 then implies that ||z(t)]] — oo, and ) z;(t) = 0 is equivalent to
z(t)LH, where H = {(hy,...,hn) € R3N h; = hj,i,j=1,...,N}

We proceed by induction. The assertion is clearly true for N = 2.
Assuming that it is true for all particle numbers strictly less than N, all we
have to show is that after finite time the system will break up into at least
two noninteracting clusters.

Suppose this is wrong; label the particles 1,..., N and connect the
vertices ¢ and j by an edge (4,75) exactly if the particles labeled i and j
have infinitely many collisions with each other. This defines a graph G that
is connected exactly if the system does not break up into noninteracting
clusters.

Consider an edge (%, 7) in G. By definition, there is a sequence t — oo
such that

lzi(th) — z;(tk)| =0
(|- denotes the Euclidean norm in ®2) for all , i.e.,
i | Zilte) _ @i(t)
k—oo | [lx(te)ll  ll=(te)ll
It follows that e; = e; if (¢,7) € G. If G is connected, we conclude that

e; = e; for all 4, j, i.e., e € H. However, this contradicts z(t)LH and
[lz(t)|| = oo. The proof is complete. 0

=le; —e;| =0.
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Problems

1. Prove the identity

=[] " a0 w,0),

where ¥ is defined by (A.1).

Hint: Use the Liouville theorem to prove that the Lebesgue measure
of the “tube” ¥~1(A x [0,%p)), where A C X is a measurable set and
to < infyeca a(y), is o(A)to.

2. Prove that the map T is o—preserving.
Hint: Use the Liouville theorem.



Appendix 4.B

A Rigorous Derivation of the
BBGKY Hierarchy

Here, we want to prove Theorem 4.3.1. As in Section 4.3, we write
PO (2%,t) = /P(zs,zl\’_s,t)dzN"8

where P(-,t) is defined by (3.5). As for Py, we make assumptions 1 and 2
from Section 4.3.

Also, we introduce a class of test functions C}, which is the family of
functions u, of 6s variables such that u, € L* and such that ¢ — u,(T"z*)
is differentiable for almost all z;, with a distributional derivative in L*>.

We will make use of the special flow representation introduced in Ap-
pendix 4.A.

Proof of Theorem 4.3.1

Step 1: The special flow representation. The following special coordinates
are well suited to the problem. Fix s < N, and let

F:]T(_) ={z€ Llz; —zj| =0, (zi—z;) (& —&)>0(<0)}

(for some i € {i,...,s}, j € {s+1,...,N}), be the set of all phase points
that display an outgoing (ingoing) collision between the particles with labels
%,7. Let
s N )
+(-) = += — F+ -
o= U F, F=FtUF-.
i=1j=s+1

Elements of F+(F~) will be referred to as outgoing (ingoing) “s-interacting”
states.
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We split I' into two disjoint sets: I' = I'® U I', where ' =
{(z8, 2N=9). Ttz = (Tt2*, Tt2N~*) for all t € R} is the set of all phase
points that never pass through an s-interacting state, and I'=T—TI are
the phase points that do. The special flow representation is a representation
of I'. We split F'+ into four disjoint subsets as follows.

Ff:={zeFr; T %2 ¢ F*, T'2¢ F~ forallt > 0},
Ff:={:€F"; T '2¢ F* forallt >0,
but there is an 7 > 0 such that T"z € F~},
Fsf :={z € F*; thereis a t > 0 such that T~z € Ft,
and there is an 7 > 0 such that 7"z € F~}.

The smallest possible r in the definitions of F;", F;~ will be denoted
by a;(z), i = 1,2. We set ag(z) = a3(z) = .

Fj :={z € F' there is a t > 0 such that T~*z € F*,

but T"z ¢ F~ for all r > 0}.

This decomposition of F* induces a natural partition of I" by

Io:={zeT; z=T*y for some y € Fy and some t € (—oo, o0)},

I :={z el =Ty for some y € F;", some t € (—00, a1(y))},

I:={zeT; z=T"y for some y € F;}, some t € [0, a2(y))},
and

I3:={z€Tl; z=T'y for some y € F;, some t € [0, 00)}.

The mapping 9 : (y,r) — T"y, defined on

(Fo xR)U{(y,7); y € FT', 7 € (—00, a1 (y))}
U{(y,7); y € ', m €0, ea(y))} U (F5 x [0, 00)),
with values in I', is then one to one, measurable, and has a measurable

inverse. We extend 9 to F'* x R by ¥(y,7) = T"(y). _
Let 70 = 71 = —00, Y2 = 3 = 0. Then, for f € L}(I),

/f(z) dzzza—:/f(z) dz
P =0 R

3 (21 (y)

- [ [ sewn) drdst .

=0 Fi+ Vi
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The measure do™ is defined on F't and involves the Jacobian determinant
of the transformation ¢. On Ff, do™ is

(B.1)
d0+ = dz*® d:L'3+1 “en d.’L‘j_ld(Ej+1 . .d.’EN d£3+1 e di dyijnij . (fz - §])
with ng; := ;:2;; - dy;; denotes the Lebesgue measure on the sphere with

radius o and center xz;, and dz° denotes Lebesgue measure on [5.

(B.1) is a special case of the measure do(y, ), which we introduced
and described in Appendix 4.A; here we verify its form in detail. It is
enough to study a two-particle phase point 2z = (zy, &1, 22, £2), because
only pair collisions are being considered. Suppose that z = ¥(y,r), where
y = (y1, y1-+no, &, &) is in outgoing collision configuration (n- ({2 —&;) >
0). We have z; = y1 +7r€1, 2 = y1 +no +réz. The Jacobian determinant

13—(9;—'3;7‘ is a 12 x 12 determinant (six variables are needed to describe a

particle), but the only nontrivial part comes from the spatial components.
We can write

F) 9zy 9z 9z

' < | O on 661‘
T {8z Oz Bz |°

6(3/3 'l”) dy1 on or

Let n = (sin¢cos ¥, sin ¢sind, cos ¢) and let D be the matrix

Oz3 023,
o9’ 00 )’

then
1 00 0 0 &1
010 0 0 &12
dz 210 0 1 0 0 613
oy,r)| 1 0 0 cosgcosf —singsinf &
0 1 0 cos¢sind singcosf Ezn
0 0 1 —sing 0 &a3
1 000 0 €
01 00 O £1o
o200 10 0 &13
B &1 —&n
O D & —{&i2
€23 — &3

=0 singniz - (& — &)

[compare with (B.1)].
The right-hand side of (B.1) also defines a negative measure on F~,
which we denote by do~.
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Step 2: The BBGKY hierarchy. Now, multiply the solution P(z, t) of the
Liouville equation by a test function u, € Cf, (u, depends only on 2°) and
calculate

d
P / us(2)P(z, t) dz
r
d S ai(y)
2> / / us(¥(y, 1) Po (T (¢(y, ) dr do™* (y).

g ==

Fr %
1

But Py (T *(¢(y,7))) = Po(¢(y, r — t)); after substituting 7 = r —t, we

find
d 3 a;(y)-t
D / / us (Y(y, t+ 7)) Po(v(y, 7)) dr do™ (y).
=0 Fr oyt

The function ¢t — u,(T"%2) is in general discontinuous at an s-interaction,
because u, does not depend on the last N —s particles. Therefore u,(¥(y, t+
7)), T € [1; — t, a;(y) —t], can “jump” at 7 = —t. To take account of these
jumps, we split the inner integrals for F; and F{t at —t and differentiate.

d ( /+]°) (s £+ 7)) o ly, ) dr do* (1)

Fy

. / us (#(y, 0-)) P((y, 0), ) do™* ()

+
Fy

+ [ us(¥(y, 0+)) P(¥(y,0),t) do* ()
F

(B.2) +/ (/+/) %us(w(y,fﬂ))Po(tﬁ(y, 7)) dr do™ (y).
Ef -t

-t ax(y)-t

;i% / / + / us (Y(y, t + 7)) Po(¥(y, 7)) dr do™ (y)
Ff \~o° —t

_— / uy - P((y, a1, (v)-), t)dr do* (y)

+
Fy
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+ /[us(dj(ya 0+)) — Ug (w(yv D_))]P(d)(y’ 0)1 t)dT d0+(y)
R
oy (y)—t

+ / / ggus (¢(3/, t+ T))Po (’l,[)(y, T))dT d0-+(y)

+ —o©
Fy

No splitting is necessary for F; and F3+ . By direct differentiation, we get

(B.4)

and

(B.5)

az(y)-t

% / / us (¥(y, t+7)) Po(v(y, 7)) dr do*(y)

+ —t
F2

=~ [ [ (¥(0, a®)-) PO 220)), 9
7
—u, (¥(y, 0+)) P(¥(y,0),t)] do*(y)

az(y)—t

" / / gf us (¥(y, t+ 7)) Po(v(y, 7)) dr do™t (y)

oot

/ / (W, t+ 7)) Po(b(y, 7)) dr do(y)

Fr-t
Fy

&.[g_

N / us (¥(y, 0+)) P($(y,0),t) do* (y)
Fy

" / / § ;t s(¥(y, t+ 1)) Po(¥(y, 7)) dr do™* (y)

Ff

We collect all the boundary terms in these equations that correspond to
limits from below:

- /(us : P)(d"(% O"')f t) da+(y)

FS

- [ Py, 01)-), 1) do* )

1
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- / (us - P)($(y, 0-)), £) do™* (z)

+
Fy

(B.6) - / (e - P) (9> a2(t) =), £) do™ (u).

+
F2

F~ can be split in analogy to the partition of F'*; in fact, this partition is
already given by the integration variables in the various terms in (B.6). For
example, {(y,0—); y € F;" } corresponds bijectively to the set of all ingoing
s-interactions such that {T"y; t € R} contains exactly one such interaction,
{(y, a1(y)—); y € F;'} corresponds to those ingoing s-interactions that
have seen exactly one s-interaction before, {(y,0—); y € F;'} corresponds
to those that are first s-interactions but not last ones, and {(y, a2(y)—); y €
F5T'} corresponds to those that have seen at least two s-interactions in the
past.
Therefore, (B.6) is equal to

(B7) [P, 0-), ) do~ ().
e
The other boundary terms in (B.2-B.5) add up to
(B8) [ e P65, 04) do* ).
P+

If we add (B.7) and (B.8) and use (B.1), we find

8 N
(Bg) Z E /US(ZS)P(El...xi...a}j_lijj+1....’L‘N,El...fN)

i=1 j=s+1Fij
dz? d$3+1 .. d(l!j_l d.’L’j+1 ve d$Nd§3+1 ‘e d&N dyij T (EJ - &)

By assumption, we know that P(-,t) is do*(do~) almost everywhere de-
fined on F*(F~). Hence P**1(z,...,2,, T; — 1o, &, ...,&+1) is almost
everywhere defined with respect to dz® dy; sy+1 d€s+1, and because of the
symmetry assumption, we rewrite (B.9) as [ u,(2*)(Q7,,P**1)(2*, t) d2°.
The remaining terms in the identities (B.2-B.5) add up to

3 a;i(y)
3 / / D, us (¥, T)IP((y, 7), 1) dr do™ (y),

=0 FF

where D, [us(¥(y, 7))] is set equal to zero at discontinuity points.
If z = (y, 7), let Loug(2) = D.[us(¢(y, 7))]. We can then write
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%/us(zs)Ps(zs, t) dz*
jt /us(z)P(z t)ydz+ — d /us(z)P(z, t) dz

I'> I

;t/us(Tt s)]30( )dz+d /us z, t)d

= /(Esus)(z) -P(z, t) dz + /(Esus)(z)P(z, t) dz

re P
/ s(2)(QIL PP (2%, t) d2°

= /(L‘sus)(zs)P’(zs, t) d2° + /us(zs)(Q‘s’HP"H)(zs, t) dz

Step 3: Uniqueness and the BBGKY hierarchy in mild form. We have
so far established that the s-particle distribution functions P*(-,t) satisfy
a weak version of the BBGKY hierarchy equations, namely,

(B.10) %/us(zs)P’(zs, t) dz® = /(ﬁsus)(zs)P"(z“’, t) dz°
+ [u) @ PG 1 do

Now we prove that the P?(-,t) are the only solutions of (B.10) for the
given initial data such that ¢t — P*(T%z°, t) is continuous for almost all
2°. Clearly this is true for PV(.,t) = P(-,t), which is just the solution of
the Liouville equation. Suppose then that P° and P} are two solutions of
(B. 10) such that PN = P]; we consider s = N — 1, and set h(zV 71, t) =
(PN=1 _ PN=1)(2N-1 ¢). Then h satisfies

d

5 | unv- 1ZN DN 1) d2N Y

= /(LZN-IUN_l)(zN‘l)h(zN_l, t) dzN 1t

for all uy_; such that ¢ — uny_1(T%_,2""*) is differentiable. Choose
a family of test functions uy_j.(2N"!), defined by un_1,-(zN71) =
uN_l(TﬁilzN“l), then
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(B.11) % / un—1o(ZN RN, ) dZN
= /(LN_luN_l,t(zN‘l))h(zN'l,t) dzN-1
+ f % [uN_l’t(zN—l)]h(zN"l,t) dzN"1t =0,
because d
a[uN_l,t(zN“l)] = —EN_luN_lyt(zN'l).

(B.11) implies that h(2V~1, t) = 0 almost everywhere.

The continuity of t — PN=1(T%_,2N-1 t), PN~1(...,t) almost ev-
erywhere implies that (Q%_,h)(2V 2, t) = 0 for almost all 2V=2; by re-
peating the argument, we see that PN=2(zN=2 1) = PN=2(2V-2,t) almost
everywhere, etc.

The proof that the s-particle density functions P*(2*, t) actually sat-
isfy the continuity t — P*(T%z2°, t) is a simple consequence of assumptions
3 and 4 on Py. The details are left to the reader (see Problem 2).

Finally, we note that the family of functions P*(-,t)(s = 1,...,N)
defined by (4.7) is a solution of the BBGKY hierarchy in the weak sense;
because the sum in (4.7) is actually finite, it follows that t — P*(T%2°, t) is
absolutely continuous for almost all 2°; by the uniqueness just proved, the
P() given by (4.7) must coincide with the s-particle distribution functions,
and by the absolute continuity of ¢ — P*(T¢2%, t), it follows that the s-
particle distribution functions satisfy the hierarchy equations in the mild
sense. The proof is complete.

Problems

1. What is the special flow representation in the case N = 2, s = 17
2. Show that hypotheses 3 and 4 on P, imply that ¢t — P*(T¢2%,1) is
continuous for almost all 2°.
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Uchiyama’s Example

We now present an example of a discrete velocity Boltzmann equation for
which the rigorous validation from Section 4.4 fails. The example was dis-
covered by Uchiyama 2% in the mid-1980s and was, at the time, a shattering
blow to attempts of rigorously deriving discrete velocity models from hier-
archy equations.

Discrete velocity models of the Boltzmann equation were introduced
to get analytically more tractable equations ? and to be able to get explicit
solutions for physically interesting situations *. For a detailed discussion of
the subject, we refer the reader to Refs. 9 or 16.

The particular example we focus on is known as the four-velocity plane
Broadwell model. Consider a gas of two-dimensional “hard diamonds” of
diagonal length o > 0 (see Fig. 14), each of which can move with one of
the four admissible velocities

§&=(1,0),&=-£,86=(0,1), &4 = —&.
The one-particle distribution density function P(z,¢,t) takes the form

Pl(z,6,t) =Y PMz,t) 8, (6),

i=1

such that P}(z,t) is the density function describing only the particles that
move with velocity £;.

It is useful to visualize the collision laws between the particles by means
of the diamond shapes. Two types of collisions are possible, as depicted in
Figs. 15A and 15B.
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FIGURE 15A. Pre- and post-collisional configurations for collisions of type 1.

Collisions of type 2 amount to velocity exchange between the particles.
In the limit ¢ — 0, these collisions become indistinguishable from non-
collisions and are expected to make no contributions to the collision term
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O~

FIGURE 15B. Pre~ and post-collisional configuration for a collision of type 2.

[as is clearly visible in (C.1)]. This holds actually rigorously. Collisions of
type 2 are not the reason for the pathology we want to explain.

Formally, it is expected that in the Boltzmann-Grad limit N — oo,
o — 0, No — a (we have a two-dimensional gas) the BBGKY hierarchy
for this system of particles turns into the Boltzmann hierarchy associated
with the discrete velocity equations

(01 + 0z) f1 = c(f3fa — f1f2)
(0 — 0z)f2 = c(fafa — f1f2)
(0 + Oy) f3 = c(f1f2 — f3f4)
(0r — By) fa = c(f1f2 — f3fa)-

(1)

The correlation functions

4
POE = S PY . (21,...,74,0) 8, (61)0¢, (&) - B, (&)

21 40e0yts=1

satisfy a hierarchy of equations much like the BBGKY hierarchy for hard
spheres. We need some notation to write it down.

Let A be the diamond with vertices (+1,0) and (0, +1). Particles at =
and y are, by definition, in a collision configuration if

= %_—(y — &) € BA{(£1,0), (0, £1)}.

(We disregard what happens in measure zero situations like [ = (1,0); see
Fig. 16.) '
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~ OO~

FIGURE 16.

Let £ be the velocity of the particle at z, n the velocity of the particle
at y. A collision will change the velocities ¢, nonly if [-£ >0and!-n <0
(see the examples in Fig. 17).

gl

FIGURE 17A. Collision with change of velocities.

Ko

FIGURE 17B. Collision with change of velocities.

Let i denote the counterclockwise rotation by ¥ in ®? [e.g., i(1,0) =
(0, 1)}, then the post-collisional velocities £*, n* are given as follows:
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_.<>

FIGURE 17C. Collision without change of velocities.

& =i, n*=inifé-n=-1land!-(i€) <0
€ =—it, " =—inifé-n=—1and - (i) >0
(C.2) (see Fig. 17B)
=n,n=£if{n=0
(velocity exchange, see Fig. 17C)

‘We will not use these explicit formulas in the sequel and gave them only for
the sake of completeness. (C.2) will, of course, be referred to as the collision
transformation for the present context. In a slight abuse of notation, we
use T (as in Sections 4.3 and 4.4) to denote now the evolution group for a
system of s “flat hard diamonds.” The BBGKY hierarchy becomes, in mild
form,

(C3)
i

PO (2°,t) = P(T,2°) + (N = s)o / (C2, PEH) (T 1) 22 1) dty
0

with

P et = VIS [
k=1Yn J1€0A(n&k)

{P(S+1)(x11' ey Ty T — Uli&lv' .. )62’ . 1€svn*;t1)
- P(s+1)(m17” « 3 Lgy Tk +0'l,§1, o ){k?" . 76)7]; t)}dldn

(C.4)

with 0A(n, &) ={l€ 0A;l-n>0and [ - € < 0}.

Notice that we have in the collision integral already distinguished be-
tween in- and outgoing configurations. Assuming as usual continuity of PéN)
along N- trajectories, one can equivalently write

(C.5)

P(s+1)(xly coy Tsy Tk + Ul)€17 vy &y sy m t)dldn
n lv"leaA(nka)
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The expression (C.5) reduces to (C.4) by rewriting the part where —[ €
O0A(n, &) —the outgoing configurations— in terms of ingoing configura-
tions.

We can now show why a derivation like the one done in Section 4.4
must fail for Egs. (C.1). We use the notation from Section 4.4, but it is
understood that T? and C?,; represent the flow and collision operator in-
troduced in this appendxx

Let s = 1 and consider the series solution to the hierarchy given in
(C.2-4). We demonstrate that step 1 in the proof of Theorem 4.4.1 fails for
n = 3 (i.e., three particles are adjoined in the process). Spelling out (4.14)
for this situation, we find

1 2 3
(N = 1)(N - 2)(N - 3)03 Z Z Z

[ deadeades [ dnatadta Ao,
where
Yi=T;5(Y3U2y)
Y3 =T (Y2 U 2f3)
Y2 =T2 (Y u2fy)
Yl =Th"%;
or, in one formula,

Y4 =T, B (Te (TN (Thtzu zf,‘l) U zf”Q) U zf},).

Recall the meaning of all the indices: If k; = 1, then the notation z} , means
that z},2 denotes position and velocity of the second particle, which gets
adjoined in the process, and it is adjoined to the particle whose coordinates
are listed in first position.
For the model under consideration, it is true that there are choices zf}l,
k

215 and zf}, of positive measure, such that on a subset of positive measure
of the three-dimensional simplex 0 <t3 <t; <t; <t

Y Ao Yo = Tt (Te 2 (T (T8 P2 U 2ty ) U 2t%) U #3)

as o — 0.
To see this, consider a particle with label 1 in position x, moving with
velocity (0,1) at time t; so z = (z,&3) (see Fig. 18).
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¥

FIGURE 18. 1) The particle represented by z.

8

FIGURE 19.2) Y'Uz{ ;.

FIGURE 20.

At time t —t; earlier, the particle has coordinates T%'~*z, and particle
2, with coordinates z{ ; = (z — (t — ¢1)€3 + 0l,&4) is adjoined (k; = 1) (see
Fig. 19).

In precollisional configuration, the configuration from Fig. 19 is as in
Fig. 20,
and at time t; — ¢, earlier this was the configuration Y2, to which particle
3 with coordinates z] , (k2 = 1) is adjoined (see Fig. 21).
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B om

FIGURE 21. 4) Y?U 2] .

At time to — t3 earlier, particle 4 gets adjoined, with coordinates zf73
(k3 = 2) (see Fig. 22).

oS X

FIGURE 22. 5) Y3U2%,.

Up to this level, the convergence

To~ " (TE " (Th U z%,l) U ziz) U zf‘3

TP (T (T2 U 2L, ) Usly) U2,

is true as o0 — 0 because there are no collisions other than the ones described
via the adjoinment of particles. However, if we apply the operator T to
the situation in Fig. 22, we have a positive probability of an encounter
between particles 3 and 4, i.e., at time t3 earlier we have the situation in
Fig. 23.
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v o

FIGURE 23. 6) T, (Y3 U 2] 3).

O o

FIGURE 24.

In contrast, T, (Y3 U 225) would be the configuration in Fig. 24,
(particles 3 and 4 ignore each other), and it is clear that step 1 from the
proof of Theorem 4.4.1 is not true. Notice that this happens no matter how
small o is.

The pathology clearly arises from the discrete velocity structure in the
considered model. If the adjoined particles can have any velocity and the
velocity distribution is absolutely continuous, then the probability of an
earlier collision between particles 3 and 4 becomes negligible in the limit.

We emphasize that the difficulty arises on the level of the BBGKY
hierarchy for flat diamonds. Notice that the adjoinment of particles in the
construction was, for the particles labeled 3 and 4, done in ingoing con-
figurations. Therefore, the picture does not depict a real evolution; for a
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real evolution, the particle with label 2 would emerge with velocity (1,0)
from the encounter in 5). The point is that this encounter only happens
with a certain probability, and ditto with all the other encounters in the
construction. The probability to find our first particle in state z at time ¢ is
influenced by the compulsive earlier collision between the possible collision
partners labeled 3 and 4; this is the problem.

We know of no real particle evolution, with continuous or discrete ve-
locity distribution, in which this recollision phenomenon occurs with a non-
negligible probability. However, as pointed out by Uchiyama, particles en-
gaged in a collision of type 2 have a positive probability to recollide, as
demonstrated in Fig. 25.

t=t3
t=t,

_,<>
4@\ \ 1\2

tzto

FIGURE 25.

However, as pointed out before, these collisions become in the Boltz-
mann-Grad limit indistinguishable from noncollisions.

We note that the problem of recollisions could be avoided by “adding
noise” to the system. For example, a particle system with four velocities in
a lattice, subject to a suitable stochastic process, yields, in the right scaling
limit, the Broadwell equations (C.1). See Ref. 6.

As a final remark, we note that the pathology occurring in the discrete
velocity models must be related to the following simple mechanical fact. The
outgoing configurations in a diamond collision are completely determined by
the incoming velocities, whereas in the hard-sphere case one has to specify
the impact parameter n, which is closely related to the relative position of
the two particles at the instant of collision.
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Existence and Uniqueness Results

5.1 Preliminary Remarks

Existence and uniqueness theorems play a very central part in the theory
of partial differential equations, particularly in the context of mathemati-
cal physics. The well-posedness of a Cauchy or boundary value problem is
of tantamount importance for the physical interpretation and/or practical
application of the equation under consideration. For instance, numerical
calculations become a touchy business in the absence of uniqueness or con-
tinuous dependence on the data, and the function spaces in which existence
theorems can be proved usually contain intrinsic useful information about
the solutions. Moreover, having in mind that the Boltzmann equation is
a schematization of the reality (described at a more detailed level by the
Newton laws) expected to be valid only in the asymptotic regime when a
gas is extremely rarefied, a good existence theorem for the solutions of such
an equation is, at least, the first check of the validity of the mathematical
model under investigation.

By the well-posedness of the initial value problem (IVP) for the Boltz-
mann equation we mean the construction of a unique nonnegative solution
preserving the energy and satisfying the H-theorem, from a positive initial
datum with finite energy and entropy. However, for general initial data, it
is difficult, and until now not known, whether such a well-behaved solution
can be constructed globally in time. The difficulty in doing this is obvi-
ously related to the nonlinearity of the collision operator and the apparent
lack of conservation laws or a priori estimates preventing the solution from
becoming singular in finite time.
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A complete validity discussion for the Boltzmann equation will auto-
matically contain existence and uniqueness results. Consequently, by the
discussion in Chapter 4, we already have some existence and uniqueness
theorems (we will revisit these in Section 5.2). Unfortunately, a validity
proof involves several hard additional steps beyond existence and unique-
ness, like estimates for the BBGKY hierarchy. Therefore, the Boltzmann
equation has been validated rigorously only in the few simple situations we
discussed in Chapter 4 (locally in time and globally for a rare gas cloud in
all space).

Existence (and in some situations uniqueness) of solutions to the
Cauchy problem is known for a much larger variety of cases, and it is our
purpose in this chapter to present these results.

The state of the art of the global existence theory for the Boltzmann
equation can be summarized as follows:

1. The homogeneous equation

When the distribution function of a gas is not depending on the space
variable, the equation is considerably simplified. The collision operator is
basically Lipschitz continuous in L}*_ and the equation becomes globally
solvable in time. Moreover, uniqueness, asymptotic behavior, and a theory
of classical solutions have been established. The theory for the spatially
homogeneous Boltzmann equation began in the early 1930s (see Section 5 in
Chapter 6 for references) and can be considered rather complete. However,
the validation problem is hard and open. We present the homogeneous
theory in Chapter 6.

2. Perturbations from Mazwellian equilibria

If the solution is initially sufficiently close to a Maxwellian, it is possible
to prove that a solution can be constructed globally in time, and we have
uniqueness and asymptotic behavior. The approach is based on the anal-
ysis of the linearized Boltzmann operator, which leads us to a differential
inequality of the type

d 2
< —
PR ky+y

where y = y(t) is some norm of the deviation of the solution from the
Maxwellian and k is a positive number. Therefore, if y(0) is sufficiently
small, we can control the solution for all times. As we said, the basic in-
gredient is good control of the linearized Boltzmann operator. This theory
will be discussed in Chapter 7.

3.  Perturbations from vacuum
This case has already been discussed in Chapter 4 and will be revisited
in the next section, together with the local existence theory.

4.  Solutions with small gradients

If the initial value is close to a homogeneous distribution, a solution
starting from it can be constructed globally in time. Uniqueness and asymp-
totic behavior can also be proved. The main ingredient in proving such a
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result is good control of the solutions of type 1 and 2. The main idea will
be explained in Chapter 7, Section 7.

Except the first one, all these results are of a perturbative character.
The knowledge of particular solutions helps to construct other solutions
close to the original ones. The general IVP is poorly understood, although
a significant and somewhat unexpected step was done in the late 1980s.

5.  Solutions for general L} data with finite energy and entropy

We will illustrate this result. Consider a regularized version of the
Boltzmann equation for which we have conservation of mass and energy
and the H-theorem. Denote the solutions by f€(¢). Here, € is the regular-
ization parameter for which the solutions formally converge to a solution
of the Boltzmann equation in the limit ¢ — 0. The conservation laws
yield the existence of a weak cluster point denoted by f(t). However, since
the collision operator is essentially a product, it cannot be weakly contin-
uous. Thus it does not follow by general arguments that f(t) solves the
Boltzmann equation. Nevertheless, some smoothness gained by the stream
operator (whenever the velocity space is continuous!) gives enough com-
pactness to prove that f(t) actually solves the Boltzmann equation in the
mild sense.

The method gives neither uniqueness nor energy conservation, but the
entropy is seen to decrease along the solution trajectories. This approach
will be illustrated in Section 5.3.

5.2 Existence from Validity, and Overview

The validity theorems from Section 4 contain the following existence and
uniqueness results for the Boltzmann equation.

(5.2.1) Theorem. (Local existence and uniqueness.) Suppose that fu €
LL(A x R3) and a.e. 0 < fo(z, &) < Ce=P€ for some C, Bo > 0, and
impose the specular reflection boundary condition for x € OA: If n is the
inner normal to A at z, set f(z, &, t) = f(z, £ — 2n(n - £),t) whenever
n-& < 0. Then there is a tg > 0 (depending on C, By) such that the
Cauchy problem for the Boltzmann equation with initial value fy has an
a.e. non-negative mild solution f(z, &, t), defined for t € [0, ty). In partic-
ular, t — f(T%(xz,£),t) is absolutely continuous for almost all (z, ).

Remarks We outlined the proof of this in Remark 2 at the end of Sec-
tion 4.4. It is clear that the proof generalizes to many other boundary
conditions (the only essential condition is that particles do not gain kinetic
energy upon encounters with the wall).

Non-negativity of f is a consequence of the fact that the one-particle
distribution function PM)(z, &, t) is non-negative by construction, and that
P® - £ in the Boltzmann-Grad limit.
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Local existence and uniqueness (but not validity) have been shown
for many other boundary conditions (including the important stochastic
boundary conditions, see Ref. 2) and for much more general collision kernels.
For details, we refer the reader to Kaniel-Shinbrot 4 and Babovsky 2. The
technicalities arising from these generalizations lead to complications; here,
we avoid most of these because they are of marginal interest for the objective
of this book. The only exception we make concerns the iteration scheme due
to Kaniel-Shinbrot 14, which nicely exploits the monotonicity properties of
the collision operators. We sketch the idea.

In mild form, the Boltzmann equation can be written as

21)  SF@ &0+ R 6 ) = QE (e 6 1)
where
T#(, & 1) = f(T*(z, ©),1),
Q1N &0 = [[In (€~ elrte, € 05(o, &1, 1) dn .,
Z

Rz 6 1) = | [1n- -6 dn de..
Sz

Clearly, if g 2 f7 Q+(g7g) 2 Q+(faf)’ and R(g) > R(f) The Kaniel-
Shinbrot iteration scheme solves (2.1) by cleverly exploiting these
monotonicities.

Suppose we already have a finite sequence of lower bounds satisfying
ae lg<lh <...<l,-1 (i =z, & t)) and a finite sequence of upper
bounds u,_1 < up—2 < ... <wug (u; = ui(z, & t)) to a solution of (2.1).
Then we define [,, and u,, by

d
0 T+ R (un1) = QF (ln-1,1n-1)
22 d # . #p# #

aun +unR (ln-—l) :Q+(un—1,un—1)

with initial conditions I,(-,0) = un(-,0) = fo. Egs. (2.2) are a pair of
(readily solvable) linear differential equations for I, and u,; the solution
formulas, the monotonicity properties of @, and R, and the (inductive)
assumption l,_g < l,_1 < Up—y < Un—2 together imply that

lno1 <lp Sup Supg a.e.

Two steps remain. First, and crucial, we have to find a start to the
iteration, i.e., we have to choose Iy and ug such that

(23) 0 S lo S ll _<_ Uy S Ug-
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If we choose lp = 0 and wug a suitable upper bound for fy (say, up =
206"5052), the equations for [; and u; become

d
Eil# +1¥ R(uo)* =0
d

%“# = Q7 (uo, uo)-

It is immediate that
0=l <h<u a.e.,
but it is also clear that the inequality

(2.4) uf (2, & 1) S uo(2,8) (=uf(z,8) ae.(z,€)

will in general hold only locally, i.e., for a short time. This is the reason
why this method leads for large data only to a local theorem. There have
been many attempts to choose ly and ug in a smarter way to prove global
existence, but success has only come in a few exceptional cases, like the
rare gas cloud in all space, which we already considered in Chapter 4. See
also Ref. 13.

The second remaining step is to prove that lim, ,,l, = ! and
limy, oo Un = u exist and are identical; if they are, they are clearly the
solution of our Cauchy problem. This step follows essentially from Gron-
wall’s inequality.

Details of this approach can be found in Ref. 14. One nice feature of the
procedure is that all the I,,, u, (and hence their limits) are automatically
non-negative.

(5.2.2) Theorem. (Global existence and uniqueness for a rare gas cloud in
all space.) Suppose that fo € L} (R3 x R}) and that a.e.

0 < fo(z, €) < be~ﬂo($2+€2)

for some b > 0, By > 0. Then, if b- « is sufficiently small, the Cauchy
problem for the Boltzmann equation has a unique global mild solution, which
satisfies

(2.5) 0< f(z, & t) < (C-b)e P10 4

Proof. This result is part of Theorem 4.5.1. Non-negativity follows either
from the validity or from a different proof, for example, by using the Kaniel-
Shinbrot iteration scheme (see Ref. 13). O
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Remarks

1.

On the asymptotic behavior. Estimate (2.5) entails in particular that
lim; o0 f(z, &, t) = 0 if £ # 0. This is physically meaningful because
the limit state for a rare gas cloud dispersing in vacuum is just vacuum
itself. The method of proof from Theorem 4.4.1 also shows that for
almost all (z,&), f#(z, £, t) has a limit as ¢t — oo (this is because
Y e Jim So(t = t1)QSo(t — ta) .. QSo(tn) fo dtn ... dt; has a
limit as t — oo if b « is small enough).

On “traveling Maxwellians.” The functions
To(z, & t) = Ce—ﬁﬂ(‘”—ﬁt)ze—aogz,

where C, Bp, ap > 0, are all explicit solutions of the Boltzmann equa-
tion (see Problem 1). We refer to them as “traveling Maxwellians.”
Toscani 17, by using the Kaniel-Shinbrot iteration scheme, has shown
that the Boltzmann equation has global solutions for initial data that
are sufficiently close to a traveling Maxwellian initially.

On a major drawback. There is a severe limitation to all the methods
and results we have presented so far. It is that we haven’t really taken
advantage of the cancellation properties of the collision term Q(f, f)
that follow from the minus sign in front of f - R(f). In fact, the upper
bound on the series solution from Chapter 4 was obtained by changing
this minus sign to a plus sign. In other words, the methods discussed
so far can be equally used to prove local existence and uniqueness (and
global existence for suitably small data) for equations like

(26) S f eV = Qi)
or
(2.7 D FHEVaf = Qi)+ FRU).

This feature of the methodology used so far is also present in the
Kaniel-Shinbrot iteration scheme. For the (reasonable) choice lp = 0,
u is obtained by solving %uf’e = Qf (uo,up), and the loss term is not
present in this equation. Loosely speaking, we can say that we know
how to solve the Boltzmann equation if we can solve the Boltzmann
equation without the loss term.

It is known !2 that the Boltzmann equation without the loss term does
not in general have a global solution. Consequently, it appears hopeless
to extend these methods to significantly more general data.

On related results. There are, nonetheless, many related existence re-
sults. We mention in particular the work by Bellomo and Toscani 3,
in which a global existence result is proved. Again the result is for

a rare gas cloud in vacuum, but the data do not have to decay like



5.3 A General Global Existence Result 139

e~P" with respect to the space variable; instead, polynomial decay
(like (1 + z?)~?/2, p > 1) is sufficient. The additional property of the
collision transformation that enters crucially into the proof in Ref. 3 is
that £ — ¢’ and & — £, are orthogonal (Problem 2). Also, the result is
for more general interaction kernels. Related results were also proved
by Hamdache 1! and Polewczak 6. Polewczak stated correctly in what
spaces the global solutions exist (there are some mistakes in the origi-
nal papers 312 — the spaces used there are slightly too small) and he
proved, in addition, some regularity results.

A global existence result of a slightly different flavor concerns the exis-
tence and uniqueness of homoenergetic affine flows described by the Boltz-
mann equation, proved in Ref. 4.

Problems , R
1. Verify that Ce=Po(2=€t)"¢=20¢" is an explicit solution of the Boltzmann
equation.

2. Check that £ — & L € —¢&,.
3. Show that the Cauchy problem

2 11 f / FE,0F(E.1) dn dn
R32
f(gyo) = (P0(£)7 Yo € L-lf—(éRB)

has no global solution unless po = 0.

5.3 A General Global Existence Result

The DiPerna-Lions result

For decades, there was no global existence theorem for the Boltzmann equa-
tion for general initial data. Of course, it is easy to solve (explicitly) the
transport equation

(G +&-Vz5)f =0,

and as we saw in Chapter 6, the spatially homogeneous Boltzmann
equation

atf:Q(f7f)

is quite well understood and has been so for quite a while. The difficulty
arises when £-V, f and the collision term Q(f, f) occur together. It becomes
hard to work in the (natural) space L', because the space-dependent colli-
sion operator is undefined for general L!-functions (because of the pointwise
product with respect to the z-variable).
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On the other hand, there is some evidence that the flow term £ - V,
should actually have a smoothing effect. For example, we saw in the previous
sections that the equation

(3.1) Ocf +&-Vaof =Q4(f, f)

(the “gain-term-only” Boltzmann equation) has a global solution if the data
are small in a suitable sense. The spatially homogeneous counterpart to this
equation, on the other hand,

(32) atf = Q+(f7 f)7

displays blowup of the solution even for arbitrarily small (isotropic) data
different from zero (see Ref. 12), and we observe that the flow term in (3.1)
actually dampens the local solution enough to let it exist for all time.

Smoothing effects of the flow term for large data were anticipated (and
speculated on) for a long time. In 1987, Golse et al. 1 were able to prove
quantitative results on such effects; these results have become known as
“velocity averaging lemmas,” and we present some of them in this chapter.
Also in 1987, DiPerna and Lions used these lemmas and other careful esti-
mates to prove the first general global existence theorem for the Boltzmann
equation 7. We present their result, with proof, in this section, following the
excellent review article by Gérard ®. We split the discussion into fourteen
steps.

Step 1  We begin by clarifying some notation. Let d € N. If 2 C
R¢ is open, LY (2) = {f : 2 - R, [ |,€ LP(U) forall U C
2 that are open and relatively compact}. If 2 ¢ 2, 2’ C R!, the space
of all measurable functions on 2’ x {2 whose restrictions to 2’ x U is in
LP(2 x U) for each open and relatively compact U C {2 will be denoted
by LP(£2' X f20c). S(R?) denotes the Schwartz space of rapidly decreasing
C>-functions on R¢. For each s € R, H*(R?) is the usual Sobolev space,
i.e. the completion of S(R?) with respect to the norm

Il = ( [+ 7RI ) ;

Sometimes, we will use 7' as an abbreviation for the transport operator

O +€ -V

Step 2 As in previous sections, our main interest lies in the analysis of gases
of hard spheres; however, the method of proof used in the sequel applies
to much more general collision kernels, and there is a technical reason (the
approximation by solutions to a truncated equation; see Lemma 5.3.3) why
such kernels must be studied. In fact, we first prove some results about a
generalized Boltzmann equation
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63 O+eVI = [ [ ae =g nir - 11 dnde,
Rd gd—1
with the usual convention f, = f(-, &, -), f' = f(-, &, ), etc. Of course,

for hard spheres ¢(...) = |n- (£ —£,)|, and d = 3 for the physically relevant
case.

(5.3.1) Lemma. Suppose that q is a non-negative measurable function in
L2 (R4 x R4 x S91) that depends only on z, |€ — &, and |(§ — &) - n]
and grows at most polynomially with respect to z and € — §.. Then, if
f = flz, &t) € CH(Ry, SRE x RY)) is a positive solution of (3.3) such
that | In f| grows at most polynomially in (z,&), uniformly on compact time
intervals in R4, we have

(3.4) J[ e dwde= [[ 6.0 a0

(3.5) Jf 106 dodc= [[ 1,08 do as
(3.6) J[ 1600 -t doag = [[ 5.0a" dz a,

(3.7
t
J[rmscoazaes [[[en s aodeas= [[ rme.0deae
0
where
e(f)(z, & 1)
3 [[wr-1 ln(ﬁfj)(z,s,snn,w - q(@, € = €., ) dt. dn.

These identities imply the estimates

(3.8)

] / £ D)1+ |2+ [E?) da de < / / FC0)(1+2Jaf + (262 + 1)) do de

and
69 [[sc.omsc.0l dxds+7/ [ et 5) ds do d
- 0

< / £, 0) (1 £(-,0)] + 2l + 21¢[2) dz dt + Ci

where the constant Cy depends only on the dimension d.

Proof. First, note that if ¢ has only the dependencies required in the lemma,
if p(&) is of polynomial growth, and if g(§) decreases rapidly, then
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(3.10) /Q(g,g)vﬁ d¢ = -3 ///(g’gi —99:)(¢' + @\ — 0 — @.)q dE dn dn.

This follows by the usual arguments, using the collision transformation
and the changes of variables (£,£.) — (&, &), (€,&.) — (£.,£); all these
transformations leave |€ — £,| and [(§ — &,) - n| invariant. The right-hand
side of (3.10) is zero if ¢ is a collision invariant.

Now suppose that 1 = ¥(t, z, £) € C* (R4 x R x RY) is such that
1 and %;/i grow at most polynomially in (z, ), uniformly for ¢ in compact
sets. If in addition Ty = 0, it follows that

G [ rodoac= [[@nwdae

- [[at.pvdoae,

and if (¢, x,-) is a collision invariant for each (¢, z),
4 / fpdzdé =0
dt o

Equations (3.4-3.6) follow by choosing successively ¢ = 1, [£|2, |z — t£|%.
Similarly, calculate

G [ fnrdzde= [[a+mnau.s) doae

and let ¢ = In f in (3.10) to arrive at (3.7). The estimate (3.8) is immediate
from (3.4-3.6), whereas (3.9) follows from (3.7) and the observation that

(3.11) [ [ wsi< [[rmn+c;
[74

f<1

with 2 = {(x,ﬁ);e“‘z‘tﬂz_mz < f(z, &, t) < 1}. The last integral in (3.11)
is bounded by [[(|z — t£|? + ||?)f dz d¢, and the assertion finally follows
from (3.5) and (3.6). D

Remarks

a) We remind the reader that e(f) is always non-negative (H-theorem).

b) Other possible weight functions 1, which will lead to conservation equa-
tions, are &, 1 < i < d (momentum), z;§; — z;&, 1 < i< j <d (an-
gular momentum), x; — t£;, 1 < i < d, (center of mass), and (z — t£)?
(moment of inertia).

Step 3 We now specify the assumptions on the collision kernel g(§—&., n) for
which the general existence result will be proved. For convenience, let V =
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& — &, Notice that we assume no dependence of g on z; such a dependence
only enters when we construct approximate solutions a little later.
Suppose that ¢ € LL (R? x §971), ¢ > 0, and that g depends only on
|V| and |V - n|. Let
AV) = [ aVin)dn
gd-1

Suppose, furthermore, that for every R > 0

1
61) [ Ac-erde—0 e jg-o
INES:
and that
(3.13) Ae LZ(RY

(this last assumption was not made by DiPerna and Lions, but, as noticed
by Gérard, it simplifies certain technicalities of the proof).
It is easy to check that the collision kernel for hard spheres,

q= 1(6_5*) 'nlv

which is our main case of interest in this book, satifies both (3.12) and
(3.13).

As in earlier chapters, we shall again split Q(f, f) = Q+(f, f) — fR(f)
and write Q_(f, f) = fR(f). Note that R(f) = Axf.

Step 4 Solution concepts. The existence of a global classical solution of the
Boltzmann equation is unknown. One of the crucial steps in our present
endeavor is to introduce weaker solution concepts that lighten the burden
of proof but are still strong enough to guarantee that the collision terms
are defined. As before, we write

g#(z, & ) =gz + £t &, 1)

for each measurable g on [0,00) x R? x R4. First we reformulate the mild
solution concept, with minimal integrability constraints on the collision
terms.

(5.3.2) Definition. A measurable function f = f(z, £, t) on [0,00) x R x R4
is a mild solution of the Boltzmann equation to the (measurable) initial
value fo(z, &) if for almost all (z,£)

Q:t(fy f)#(l', 57 )

are in Ly [0,00), and if for each t > 0

1
loc
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@, €, 1) = folz,6) + / QU F* (e, €, ) ds.
0

One of the key ideas of DiPerna and Lions was to relax the solution
concept even further, such that the bounds (3.8) and (3.9) could be put
to best use, and then to regain mild solutions via a limit procedure. They
called the relaxed solution concept “renormalized solution” (this concept
of renormalization is different from the usual use of the word “renormaliza-
tion” in modern physics).

(5.3.3) Definition. A function f = f(z, &, t) € LL (R}, x R x R?) is called

loc
a renormalized solution of the Boltzmann equation if

Q:i:(f)f)
1+f

and if for every Lipschitz continuous function 38 : Ry — R that satisfies

1B’ ()] < T% for allt > 0 one has

(3.15) TB(f) =B (R, f)

in the sense of distributions.

(3.14) € LL (R x B¢ x RY)

Remark. The division by 1 + f is natural inasmuch as it leads to a “quasi-
linearization” of Q(f, f). There were earlier attempts to use (3.15) to obtain
global solutions of the Boltzmann equation, but DiPerna and Lions were
the first to notice that renormalization would actually give mild solutions.
(5.3.4) Lemma. Let f € (L}, x R x R%).

i) If f satisfies (3.14) and (3.15) with B(t) = In(1 + t), then f is a mild

solution of the Boltzmann equation.
it) If f is a mild solution of the Boltzmann equation and if

Li (R, x R4 x RY), then f is a renormalized solution.

loc

Qx(f,f)
f+f €

The proof of Lemma 5.3.4 is presented in Appendix 5.A.

Step 5 The result.

(5.3.5) Theorem. (DiPerna and Lions, 1988) Suppose that fo € L} (R} x
R4 x R4) is such that

/ fo(1 + [2f? + €]2) dz dE < oo

and



5.3 A General Global Existence Result 145

/ folln fo| dz dv < oc.

Then there is a renormalized solution of the Boltzmann equation such that
feCRy, L*(RE x RY), f |t=0= f°, and (8.8) and (3.9) hold.

Step 6 Solving a truncated equation. The renormalized solution f will be
found as a limit of functions solving truncated equations. For some § > 0
and some modified non-negative collision kernel § € C§°(R? x S4~1) such
that G vanishes for (£ — £.) - n < §, let

Q(g,9) = / / a(g'd. — 9g«) dn dé.
and

(3.16) Qlg.g) = (1+6 / 19l d€)~'Q(g, ).

(5.3.6) Lemma. Let fy € S(R4 x R4) be non-negative such that | In fo| grows
at most polynomially. Then the Cauchy problem

(3.17) Tf = Q(f, ), flieo=fo

has a unique global solution f that satisfies the hypotheses of Lemma 5.3.1.
It also satisfies the estimates (3.8) and (3.9).

Proof. Lemma, 5.3.6 is in itself of interest, but the assertion is an example for
results for a modified Boltzmann-type equation, for which the contraction
mapping principle can be invoked. In fact, because Q grows only linearly
in |g] we have estimates

(3.18) / 10(g, )] dt < Cs / 10l de,
Rd i Rd
(3.19) 1Q(g; g)”L‘”(?R?) < C&“Q“Lw(mg),
and
(3.20) / 1G(g,9) — O/, )| de < Cs / \f — gl de.
Rd Rd

Cjs stands for various constants independent of g and f. The estimates (3.18)
and (3.20) are easily checked. For (3.19), it is clearly enough to prove that

[, [ a6 € mate)dnde. < Colaly

A simple shift shows that it is sufficient to consider the case { = 0. Let
v = |n - &|. We interpret v as the radial part of a representation of &
in polar coordinates, with n representing the angular part. The integral
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over dndé, is then replaced by the integral [g, [° [ - ..dwdvdn, where
W denotes the plane through n(n - &) and orthogonal to n. Note that we
have to insert a factor v? for the volume integral in spherical coordinates.
The integral in question becomes

/52 /Ooo /W 6(1;5')dwg(v,n)v2dvdn.

From the truncation for ¢ and the assumption that g vanishes for v near

zero we get that
[ %Aw<a,
w U

and (3.19) follows.
The estimates (3.18-3.20) can be used to show that the iteration

Tfn+1 = Q(fn7fn)7 fn It-_—()= an Tfo(x’ €’ t) = O

will converge in C([0, T]; L*(R? x R%)). We also get an L'NL>™ (R? x R?) esti-
mate uniform in ¢ € [0, T]. In fact, the convergence is even in C(R*; S(R4 x
R4)), because higher moments and derivatives of f"*! can be readily esti-
mated in terms of higher moments and derivatives of f™. This is easy, but
lengthy and tedious, so we omit it (some details are given by DiPerna and
Lions). Non-negativity of the solution of (3.17) follows as a side result of
the proof that {In f| grows at most polynomially. In fact, our hypothesis
on fo entails that fo(z,¢) > KeC:=I*+é") for some constants K > 0,
Cy >0, k € N. Also, if f™ is non-negative (which is certainly true for at
least a short time), we have

n+1 _ Z"‘fn
A v T

where C; > 0. Because of the bounds on the f", we can send n — 0o to
find

A O

Tf>-Cof
(at least locally). This implies that
f(z, & t) > Ke~Crllz=8tl"+1€1%) . o=Cat

The proof of Lemma 5.3.6 is complete. a

Step 7 Preparations. Let g, € C5°, (R? x §9-1) satisfy (3.12) and (3.13)
(uniformly for all n) and suppose that ¢, — ¢ a.e. Furthermore, we ap-
proximate fo in L} (R? x R?¢) by a sequence {ff'}, C S(R? x R?) such
that

Vo 8> pne” TR (4> 0),
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] s+ 1a + 16 dade — [[ a1+ 1P + 16 do o,

[ 51w g1 dode — [[ foltn ol do .

Let 6, \, 0, and let Q" be Q (from Step 6) with § = 6,,, § = ¢gn. Then
Lemma 5.3.6 assures us that there is a sequence {f™} such that

Tf"=Q"(f*, f"),  fl=0= 17"
and (by (3.8) and (3.9))

(3.21) VT >0 sup sup/ (1 + |z)? + |€)?) dz d¢ < oo,

te[0,T] n
(3.22) YT >0 sup sup/ o f* dz d€ < oo,

te[0,T] n
[ o]

(3.23) sup /// en(f*) dz d€ dt < oo,

"o
where
(3.24)

ik i
frfe

el =3a+6 [ i [fomr —f”f:)ln( )qn dt. dn.

Step 8 Weak compactness. We recall the Dunford-Pettis criterion for weak
compactness in L! (see Ref. 8). Let {f,.}nen C L (R?). Then the following
i) and ii) are equivalent.

i)  {f.} is contained in a weakly sequentially compact set of L (R?).
iia) {f.} is bounded in L'(R9).
iib) Ve >0 36 > 0 such that VE C ®¢ (E measurable) with A(E) < §

sup [ |fal dz <e.
7]

iic) Ve > 03K compact, K C R¢, such that sup,, [pa_x |fa] dz <€

We will apply the criterion to the following situation.
Ifh € C(Ry, Ry) and w € L2, (RY, R,) are such that h(t)/t — oo (t — o)
and w(z) — oo (Jz| — 00), then the inequality

(3.25) sup / ({1 fal) + |l (L + )] dz < 00
§Rd
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implies that {f,}nen satisfies ii).

A major problem with weak convergence is that nonlinear functions
are in general not weakly continuous. The standard example is the sequence
sin(nz) - Xjo,1)(x), which converges weakly to 0 (Riemann-Lebesgue lemma).
However, sin(nx)-X[,1(z) = 3X[0,1(z), such that in this case with F(z) =
z%, F o f,/—F olim,, f,. A useful property for our objective is the fact
that convex functions are at least lower semicontinuous. If F : ® — R is
convex and if fn—:;» fin L', then

/Fofdzgliminf/Fofndx

(the above example confirms this assertion). The proof of this well-known
fact can be found, e.g., in Ref. 5. Also, if one of the factors in a product
converges a.e. and the other factor converges weakly, then the product is
compact in the weak topology. Specifically, let fn—> fin LY let {gn} C L™
be bounded and let g, — g a.e., then

fn- gn_;"fg in L'
This follows because for every € > 0 there is a compact set K such that
sup,, fw\K(lfngn' + |fgl) dz < ¢, and by Egorov’s theorem, there is a set

E C K such that sup,, [;|fn| dz < € and such that g, — g uniformly on
K\E. The details are left as an exercise.

Step 9 Weak compactness of the collision terms. We now work with the “ap-
proximating sequence of solutions to modified equations” given in Step 7.

%, Q7, A, all refer to this situation. The collision kernel in Q7 _ is really
z- (and t-) dependent, and given by

1
an(z, V,n) = ﬁmqn(V, n).
(5.3.7) Lemma. For all T > 0, R > 0, the sequences
Q% (fns fn) Q~ (fn, fn)
1+ Ju and 1+ fa

are contained in weakly compact subsets of L' ((0,T) x R?¢ x Bg), where
Br = {£ € ®%||¢]| < R}

Proof. For Q™ , we have 0 < @ (f'}’f") < A, * fn. We verify the Dunford-
Pettis criterion (iia,b, and c¢) for A, * f,, using (3.21), (3.22), and (3.12)
(which holds uniformly in n for all A,):

For iia) note that by (3.12)

//An*f"dgdx-:///An(g_z)dzf“dgdz

RIBr RIR4IBR
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< [[aa+riepsransc,
RiRd
For the proof of iib) and iic) we first focus on the simpler case where A
is integrable, i.e., || A||z1(pay < 00. Then, without restricting the generality,

an: = ||AnllL1(ney can be assumed to be bounded uniformly in n.

Let
tlnt fort>1

¢(t):{0 for 0 <t <1.

¢ is convex and satisfies the inequality

$(L) < ag (%) + L|Ina]

for all @ > 0. By this and Jensen’s inequality,

[ otnx 1) de aa

R4Br
An* "
San/‘/QS(a;f) dgdx“l"“nanlan”anLl(%dxéRd)
RIBRr "
< / / Ap % §(f™) dE do -+ | 10 anlanl] ] 2 o xste
R4Br
< a / B(F) de dz -+ | In anlan] f™] 2 axse),
RARd

iib) then follows from the bounds on [, /| B $(An x f*) d€ dz. (Actually,
we could have set R = oo for this argument; we shall have to use R < oo
when we generalize to a nonintegrable A.)

To show iic) we consider [p, fl§l> x An * f d€ dx and estimate

[ [ s dedo< [ [ [ane-errm e 0xgeiznm de. de o

RIYE|I>K RIRIR

+///X{I£IZK/2} ‘X{ea <k /23 An(€ — E) " (2, &4, t) dE, dE dz

RARdRA
4an 2 n
<% [nl*f™(z, &, t) dés dz + An(2) dz | - [|f™ | 1 (e xa)-
RaRd 12> K/2

The right-hand side becomes (uniformly in n and t) small as K — oo, and
iic) follows.
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Next we remove the uniform integrability condition on A, [the only
assumption we retain is (3.12)]. Notice that the reasoning given earlier
remains valid if all A,, were supported in some compact set, say

(3.26) An(2) = An(2) - X{jz1<K}-

Otherwise, let A, x be defined by the right hand side of (3.26). Weak
compactness of A, xf™ will follow if we can show that

sup || An k*f" — Apn* f"|| Lo (0,7; L1 (RéxBr)) = 0 a8 K — co.

But
“An,K*fn N fn”Ll(?RdeR)

= ///An(é—ﬁ*)'X{ls—s.lzx}f"(x’ &, 1) dé, d da.

R4 BrRd
By (3.12)

/ Ap(E— ) dE < e(1+ ) + C.,

and {&; 16— &| =2 K} C {&; 16| =2 K — R} if [§| < Rand if K > R.

(6] = €« — €+ €| > [ — &.| - €] > K — R).
So,
/ An(€ — &) - Xye—e.ioxy ™ déu dE do

R4BrR4

C
< 1 . 2\ rn € . 2 'n’
<e [[a+iepr+ g2z [[enr
and the assertion follows by first sending K to oo, then € to 0,4.
Boundedness and weak compactness of {Q+1(i f’"f ) } in

L' ((0,T) x ®% x Bg) is now deduced from the H-theorem. Recall that if
il i
frfe’

then, by (3.7), e,(f™) is bounded in L' ((0,T) x R x R%), and we have for
all K > 1

(3.27) 1M S KQL(M, M)+

en(f") = / / Gnl€ = &0, W)™ ¥ = F2 )

LK™

We leave the proof of (3.27) until later. Because we already checked the

weak compactness of 9;1—({;—;]‘:—2, (8.27) readily implies that
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(3.28)

Q n fn
Sup()/m[%/d Xa(2,€) + Xjal +ie12 R} (@) l(fr £ ) it dz dt -0

as A(A) — 0 and R — oo.
To prove (3.27), let A% = {(5, €, ) f7 F7 > K f7 ff} and B}, =

(A%)¢, then
= [ s

<K [[anrsixay + [[axa (1 =+ [[axag sz

On A%, In ’::,,—;*: > In K, and (3.27) follows easily.
This completes the proof of Lemma. 5.3.7. ]

Remark. In the same way, one proves that

(3.29) Q" <KQ%} +

mK™

Step 10 Extracting a weakly convergent subsequence, and first properties
of the limit. Because {f"} has uniformly bounded entropy and second mo-
ments, (3.25) implies that we can extract a subsequence (again denoted by
{f"}), which converges weakly in L*((0,T) x R? x R9),

fr—f.

Let, as in the Appendix, g5': = % In(148f™). The uniform bounds on entropy
and second moments for f™ easily imply that

(3.30)  sup sup||f*(-,t) — g5 (", )L (Raxpe) — 0 as 6—0.
te[0,T] n

Also, because

Tgs = 1+6an"(f" ™),
i Q"(f" fn)#(s)
5 (t) = ——‘““‘—1 5/ G)

By the compactness spelled out in Lemma 5.3.7, V6 > 0VI' >0VR >0

g (t+h) —g

sup sup |1g6#(t +h) - #(t)”Ll(éRdea) —0
tefo,T] n

as h — 0. We next estimate, by (3.30) and (3.8),
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sup [F#(t+ h) = F# ()]l 2 (rexme)

<0(8) + sup llgs®(t+h) — gg#(t)”Ll(ERdeR)-
This easily entails

sup sup || f"#(t + k) — f** ()|l 1 (e xre) —0,
t€(0,T] n h—0

and a standard equicontinuity argument shows that the (weak) limit f must
then satisfy

(3.31) f#* e C(Ry; LY(R? x RY))
and, forall T > 0

sup_[[f#(t+h) = S (@)l —0.
€[0,T] -

Actually, by using an elementary argument from integration theory,
feC®Ry; L*(RY x RY)).

Also, by using the convexity of the function z - max(Inz, 0),

(3.32) vt //f|lnf| d{dm+1im:upj//en(f") d¢ dz
0

< / foll1n fol + 21af? + 2I€[2) € dz + Ca,
and

vt //f(1+lz12+|v|2)d§dx§//f0(1+2|a:|2+(2t2+1)|§|2)d{da:.

Step 11 Velocity averaging. By now, we have a weakly convergent sequence
fn — f, and the limit f is in

c(lo, T]; LY).

Subsequences of QU il also converge weakly (by Lemma 5.3.7),

it+f=
but we cannot say a priori whether the limits will by Q’“l;(é’f ), because
hi

nonlinear functionals are in general not weakly continuous. s problem
was first overcome by DiPerna and Lions by skillful application of results
known as “velocity averaging lemmas” (see Ref. 10). We present these now
(actually, we confine our discussion to a simplified situation, which is all we
need).
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(5.3.8) Lemma. Let u € L?(R x R4 x R?) have compact support, and suppose
that Tu € L*(R x R¢ x R4). Then

/u%GH”%%xWL

and the HY%-norm of [u d¢ is bounded in terms of ||ul|r2, | Tul|L2, and
the support of u.

Remark. The function [ u df is a “velocity average” of u.

Proof. Let 4 = 4(z, &, 7) be the Fourier transform of u with respect to ¢
and z. By assumption, ¢ and (7 + ¢ - 2)4 are in L2(R x R¢ x ®?) and have
compact support in £&. We now split the integration domain in

[ e 6,71 e
in a suitable way: Let p = (72 + [2|*)'/2, 70 := T, 2 := %,
/ﬂﬁz / o df + / @ dé
{lTo+€20l<3} {lro+€20]2 1}
= I + II.

To estimate I, observe that for every compact K C R there are ¢y > 0 and
C > 0 such that for all € € (0, ¢)

sup ME€EK; |ro+&- 20| <€} <Ce
(10,20)ES9

where ) denotes the Lebesgue measure in R%. Then, by the Cauchy-Schwarz
inequality, with € = %,

2 C [0
i sp/!ulde
and

e < [ el (/ lT+Ez12|'&I2dé)

{¢€K;lro+€2012 3}
c’ N
<= [ir+eafiaP ae
P
The last inequality follows because by an elementary integration

(3.33) [ meeate<cp

{¢eK;|ro+€20|2 2}



154 5. Existence and Uniqueness Results

The constant C’ depends on the support of & with respect to £. To check
(3.33), consider first 79 = 0, 2o = (1,0, 0). Together, the estimates for I and

IT imply that
Ja w1 e 6, ae

ie., /u d¢ € HY/2.

2
dz dr < 0,

O

We will use Lemma 5.3.8 to pass from weak to strong convergence in
Ll-settings. The next lemma is the crucial one.

(5.3.9) Lemma. Suppose that {g,} C L*((0,T) x R? x R¢) is weakly rela-
tively compact, and that {Tg,} is weakly relatively compact in LL _((0,T) x
R4 x RY). Then, if {n} is a bounded sequence in L= ((0,T) x R x R?)

that converges a.e., then ([ gnyn d€) is compact in the norm topology in
LY((0,T) x R4).

Before proving this, we note an immediate corollary.

Corollary. Under the hypotheses of Lemma 5.8.9, if 9n—9 in L1((0,T) x
R4 x R and P, — ¥ a.e., then

l/gnwndg~/g¢d§

Proof. (Of Lemma 5.3.9.) Because for each € > 0 there is a compact set
K C (0,T) x ®% x R4 such that for all n

/ K/ (Igntonl + 98]) <

we may assume that all the g, (and g) are supported in a fixed compact
set. Also, because by Egorov’s theorem v,, — 1 uniformly except on a set
of arbitrary small measure, we may as well take ¢, = 9 for all n. Moreover,
it is enough to take 9 = 1: If ¢ is smooth enough, {g,'} satisfies the same
hypotheses as {g,}, and if ¥ is in L®, we approximate it by C*° functions
1y such that || — ¥||2 — 0 and supy, |||~ < 0o. Then

| st f

(by the Dunford-Pettis criterion).

— 0.
L1((0,T)xRd)

dxdts/f/l«pk—wltgnldtdxd&——w
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After this reduction, define u,, and h,, by

Tup =Tgn - X{(z,¢,1); |Tgn| <M}
Thy =Tgn - X{(x,¢,t); |Tgn|>M}
where uy|t=0 = hnlt=0 = 0. Clearly, then, g, = un + hn, because T'(un +

h,) = Tgy, and g, is the unique solution of T'f = Tg,,, f|i=0 = 0. Because
{Tg,} is weakly compact and because

t

hn(x +t£7 57 t) = /Tgn(z+ 7—€1 é’ T) - X{|Tg,.|ZM}(x +T£7 67) dT»
]

it follows that uniformly with respect to n

/T / / (e, €, 0)| do dE dt — 0.

0 RaRd

On the other hand {u,} and {Tu,} are bounded sequences in L?, so that
{f un d¢} is bounded in H/2 (by Lemma 5.3.8), i.e., compact in L2, and,
because it is compactly supported, compact in L!. The proof is complete.

O

(5.3.10) Lemma. Let {f,} be a relatively compact sequence in L*((0,T) x
R4 x R?Y), and suppose that there is a family of real-valued uniformly Lip-
schitz continuous functions {Bs}s>0, Bs(0) = 0 for all b, such that
i) Bs(s) — s as § — 0, uniformly on compact subsets of R,
it) the sequence {T(8s ( m )} is, for every 8, weakly relatively compact in
L ((0,T) x R? x RY). Then, if f"~——»f in LY, {¢n}n is bounded in
L®((0,T) x ®¢ x R?) and ¢, — ¥ d'e.,

tim | f 1

Proof. The weak compactness of {f™} implies that
(3.34) sup [ f* = Bs(f")llzr — 0

=0.
1

as § — 0. {Bs(f™)} is also a weakly relatively compact sequence, so that
Lemma 5.3.9 applies to g§ := B5(f™) for each § > 0, and Lemma 5.3.10
follows easily from (3.34). Note that we can extract a subsequence of
{Bs(f™)}, say {Bs(f™)}, which converges to some gs. It is in general false
that g5 = Bs(f), but (3.34) guarantees that ||f — gs|lzr = 0asé—0. O
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Step 12 Passing to the limit. We return to the setting of Step 10.

(5.3.11) Lemma. Let {f™} be the sequence of solutions to approzimating
problems as in Step 10. There is a subsequence such that for each T > 0

i) [frdé— [fdE ae andin L}((0,T) x R?),
i) Apx f*— Axf in L'((0,T) x R? x Bg) for all R >0, and a.e.,
ii) for each compactly supported function ¢ € L>®((0,T) x R¢ x R9),

()~ (9572

in L((0,T) x R9).

Proof. Recall Lemma 5.3.7 and apply Lemma 5.3.10 with (35(s) = 3 In(1 +
8s). i) is immediate. ii) requires a vector-valued variant of Lemma 5.3.7.
Let ¢n(n) = An(§—n) - X{je1<n} € Lloc(fkd LY(Bg)) and use the hypothesis
on A and the estimate sup,, [ f™(1 + |¢|?) d§ < oo to reduce the problem
to bounded domains with respect to 7.

For iii) and Q.., take 9, = % - and use i) and ii) and Lemma
5.3.10. For @, the same reasoning applies, because by using the collision
transformation we can write

JL(™ fMedt _ [If anfmf2¢

1+ [ frde 1+ [ fr dg

and choose

$a(z, €, 1)
[ @270, 6 0(a o, 0 s / (1 + [ d€) .

Rdgd—1

¥y, is bounded in L°((0,T) x R¢ x R¢) and can be assumed to converge in
L! (by the vector-valued variant of Lemma 5.3.9), and the assertion follows
again from Lemma 5.3.9. a

Remark. Unfortunately, part iii) of Lemma 5.3.10 cannot be changed to

Qi M)
1+ fn
because the renormalizing factor 1/(1 + f") leads to a nonlinearity that

cannot be controlled in the weak topology. If it weren’t for this difficulty,
the remainder of the proof would be short.

Step 13. Consider now T, defined by u = T, Lie.,
Tu = g with u|;=0 =0:
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i
T—lg(l" 6’ t) = /g((E - (t - S)E’ Ev 3) ds.
0

—1 is, as one checks immediately, continuous and weakly continuous from

T
LY((0,T) x ®* x R ) into C([0,T)); L*(R?* x RE,), and if g > 0, also
T~ 1g > 0. We use T™! to rewrite the Boltzmann equation in yet another
form.

Suppose that F € C ([0,T]; L}(R* x R )), TF > 0. The opera-

loc
tor T := e FT~ef is then continuous (and weakly continuous) from
LY((0,T) x R4 x RE ) into C([0,T}; L*(R? x RE ).

loc

If {F,} is a bounded sequence in C([0,T],L'(R* x R )) such that

loc

TF, > 0, Fu(z, & t) — F(z, &, t) for all £ and almost all (z,£), and if
gn—g in L*((0,T) x R4 x ), then, for all t € [0,T],
w

loc
(3.35) 7 gn(t) — T g(t)

in L1 (R4 x §Rﬁ)c). (This is easily proved by using the explicit solution formula
for T-1.)

To use (3.35), let F,, = T~1(A,*f"), where f*, A, are from the
modified Boltzmann equation (see Step 7). This equation can be written as

Tf" + (Anxf") " = Q1 (F" )

or (after multiplication with ef» and observing that
T(fre™) = (Tf™e™ + f{(TF)e™ = QL ),

(3.36) f7= e ™ + T QL (™ 7).

By Lemma 5.3.11 ii) and the preceding remarks, {F, } is a bounded sequence
in

C((0,T),L (R) x RiLc),
and for all t € R,
F, = F =T Y(Axf) a.e.

(5.3.12) Lemma. For allt € R, we have Tr'Q+(f, f) € L*( R4 x RL ) and
(3.37) f=foeF + T Q4 (£, 1)

Proof. Now let 8,,(t) = min(t,m), where t > 0 and m € N. Without
restricting the generality, we can assume (by considering subsequences if
necessary) that

Im:=Bmo " 7 9m

in L1((0,T) x R4 x R4) for all T > 0, and, by (3.34)
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gm — f

(m—00)
strongly and monotone increasing in L* ((0, T) x R% x R¢). For every fixed m,
{gn} satisfies the hypotheses of Lemma 5.3.9 (T'g%, = Qn(f™, f") if g%, <
= 0 otherwise) and |g7| < m for all n. Therefore, and by arguments
s1m11ar to those used in Step 12, Q+(gm,gm)—*Q+(gm,gm) as n — oo in
L'((0,T) x ®* x Bg), for each R > 0.
Now observe that from (3.36)

(3.38) 2 ffe™ + T QL (gh 9h)-
By taking here the weak limit on both sides [observe (3.35)], we see that
(3.39) f> foe™F + Tr' Q4 (9ms gm)-

Finally, we use the monotone convergence theorem, the fact that g, / f
in L! and (3.39) to conclude that T7'Q(f, f) € L*((0,T) x ®¢ x R?¢) and

(3.40) f = foe ¥ + T Q4 (S, f).

For the reverse inequality, we consider now the functions
hr:=min(l+ f*/m).
The h};, satisfy, as one readily checks,
A =min(1+ f*/m)e
n n n n
41 o (BN | Apxf [ 2 - ).
(34D +Tk, ( T3 fijm ) T A P = T

As before, by extracting subsequences if necessary, we can assume that

h%, — hp, By — fin L}
n—oo m-—+00
ﬁ‘ffW R’o’m’ bn o2 0
and
(3.42) UM Qi

1 + fn/m n—‘.;oo
Now recall Lemma 5.3.11 part iii)

JQL(U™, f)p dt fQ+ I Py d€
1+ [ frdt 1+ [fd¢

for each compactly supported ¢ in L*. Multiply the left-hand side of (3.42)
by ﬁﬁ:& (p > 0) and integrate. By (3.42), the limit as n — oo is

(3.43)
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[__j.;@”"“’ % By (3.43), this limit is less than Lot % ond it follows
1+ fd¢ ) r&

that
Q+m < Q+(f, f) a.e.

Taking now the weak limit as n — oo in (3.41), we find

hm < mln (1 + ;’;9) e P+ TR'Q4(f, ) + Tt (Ax f(hm — Im))-

Asm — oo,

f S fOe—F +TF_‘1Q+(fa f)3

and this and (3.40) complete the assertion of the lemma:

(3.44) f=foe ¥ + T Q4 (£, )

Step 14 f is a mild solution. Eq. (3.44) is already saying that f satisfies
the Boltzmann equation in some sense. We will now simply check that it
satisfies the criteria for a renormalized solution (as given in step 4).

First, it is easy to show that for every T < oo

(3.45) 9t D) e 1o 1y et x B

(just use the condition on A and that

sup sup / / P+ Jef? + [€2) da dE < o).

t€(0,T] n

As for Qil_%;—fl, recall that [see (3.27)]

16 Qi s (140 [ ds)-l

<2030 ) (146 [ azg)_1 =1 d&)_l
and
(3.47) S sup O/// en(f™) dx d€ ds < oo.

Because of the non-negativity of e,(f") and (3.47), we can assume that
en(f™) converges weakly (in D', or in the vague topology on the bounded
measures) to a bounded non-negative measure i by Lemma 5.3.11; we also
know that the other two terms in (3.46) converge weakly in L', and so
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Q:(hf) _ 20:(£f) , 4
1+6[fdE = 1+6)fde m2(l+6)fde)"

(3.48) remains true if we replace u by its absolutely continuous part e €
LY((0,T) x R4 x R9), and by taking § — 0, it follows that

with E € L*((0,T) x ®¢ x R¢). (3.45) and (3.49) now entail that

(3.48)

Q+(f,f)
T € L'([0,T) x R x RE).

To show that Q4 (f, f)(z, &, ) € L}(0,T) for almost all (z,&), we use
that by Lemma 5.3.12 forall t, T Q. (f, f) € L'(R4x RE,) and F(-,t) €
LY(R4 x R ). Explicitly, we see that

/ Q4+ (f, ) exp—(F*(t) — F*(s)) ds
0

is in LY(R? x RE ) for all ¢, and because F# is non-negative, increasing
with respect to ¢t and in L}'(R? x R ) with respect to (z,€&), it follows
that Q4 (f, f)# € L(0,T) for almost all (z,£). For Q_, the same assertion
follows from (3.49). Now we can use Lemma 5.3.12 to conclude that f is a
mild solution of the Boltzmann equation in the sense of step 4.

The only remaining step is the verification of the entropy estimate (3.9)
from (3.32). To this end, note that from the proof of Lemma 5.3.11, for all

6 >0,
L N
1+6ffrde w 1+6[fde’
e i
1+6ffrde w 1+6[fde’
in L ((0,T) x ®¢ x R x §4-1). Now, by using the convexity of the function

T
(@y) = (@—y)in

on £, x R, we see that for all T > 0

/T//rfs%dwdﬁdtflmf///ljgf}?, o e
]

The entropy estimate (3.9) follows from this and the monotone convergence
theorem in the limit § — 0.
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This completes the proof of Theorem 5.3.5.

Problems

Verify (3.11).
2. Check that the collision kernel for hard spheres,

q(§ - &n) =1 - &) -nl,

sy

satisfies (3.12).
3. Verify the estimate (3.18).

4. Show that the estimate (3.25) with the specified properties on h and
w entails weak sequential compactness of {f,}.

5. Verify (3.28) in detail.

6. Prove (3.32).

7. Prove 3.35).

8. Show that (3.34) implies lims_¢ || f — gsllz1 = 0.

Hint: Use that

If —gsller =  sup /(f-ga)'%

@llellLee <1

and

suplim... < liminfsup...
p n ®

5.4 Generalizations and Other Remarks

The result proved in the previous section lends itself to several general-
izations. The simplest considers the case when the space variable z in the
Boltzmann equation varies on a torus T¢ rather than in ®¢. Actually this
case is even simpler than the one treated before, because we can dispense
with the last conservation equation, Eq. (3.6), which had the purpose of
controlling the behavior of f at space infinity and is no longer needed; for
the same reason the terms contaning |z|2 can be suppressed in Egs. (3.8)
and (3.9) and in the statement of Theorem 5.3.5. Since this generalization
is rather obvious, we shall not deal with it in detail here. In Chapter 9 we
shall deal with another generalization, i.e., the case of a bounded domain
with rather general boundary conditions.

Another important aspect of DiPerna and Lions’s result is that, if we
take a sequence of times {t,} going to infinity with n then the weak stabil-
ity properties of their solution imply that f(-,¢+¢,) converges to another
solution M(,t) of the Boltzmann equation. Di Perna and Lions® proved
that M satisfies the equation, discussed in Chapter 3, which is character-
istic of a Maxwellian distribution. This Maxwellian might be degenerate,
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i.e., vanish almost everywhere, and this what will generally occur for L!
solutions in ¢ x R%; in the case of T¢ x R¢, however, the Maxwellian will
not be degenerate (it must have a nonzero norm). Use of the results of
Chapter 3 actually shows that the weak limit of f(-,#+t,) is an absolute
Maxwellian. The detailed argument will be given in Chapter 9, Theorem
9.5.1, when we deal with the case of general boundary conditions.

Here we restrict ourselves to remarking that the result is not as strong
as we would like. And this not only because the convergence to a Maxwellian
is weak. In fact, this is a restriction that was eliminated by Arkeryd !
by using techniques of nonstandard analysis, and subsequently by P. L.
Lions 15, who was able to dispense with the latter tool. Even if we have
strong convergence, we cannot identify the specific Maxwellian to which the
sequence f(-,t+t,) tends; thus, in particular, a different sequence of times
might give a different Maxwellian. The reason for this is that we cannot
prove that energy is conserved for the DiPerna-Lions solution (otherwise
M would be identified by the conserved quantities).
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Appendix 5.A

Proof

(Of Lemma 5.3.4.) We need an elementary theorem on linear transport
theory.
(5.A.1) Theorem. Let f, h € L (R x R¢ x R4) and suppose that

loc
(A1) Tf=h in D'(RxR?xRY.

Then f#(z,€, -) is for almost all x,¢ absolutely continuous with respect to
L,
h#(z,¢, -) € LL (R) and

loc

ta

(A2) FH(t2) — () = / W#(s) ds

t1

for all t1, t; € R. If, conversely, f and h are such that for almost all z,&
f# is absolutely continuous with respect to t and h* € LL (R), then (A.2)
entails (A.1).

Proof. Let ¢ € D(R¥xR9), p € D(R), and multiply (A.2) by ¢(z—t&, £)-p(t)
to get

- [at [[ s devia-16, 9011 = [at [[ d devia - te, Opion.

The change of variables (¢, z, £) — (t, z + t£, &) leads to
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J[ dwdev@r{ [aws* + o)} o

e, / dt(o' (8 F* + p(t)h*) = 0

for each p € C*(R) with compact support. To complete the proof use a
mollifier to approximate the characteristic function of {t;,ts] by such p.
The converse is left to the reader. ]

Proof. (Of Lemma 5.3.4.)
i) We assume that f € L} (R x R4 x R?) satisfies

loc

Q=iLS) J;f ) € L (R* x R x )
and QU1
T(In(1 + f)) = T+—’f

in the sense of distributions.
Let B5(y) = } In(1+ 6(e¥ — 1)) (y > 0), then

Biy) = &
W = T 6y — 1)
By assumption, T(In(1+ f)) and In(1 + f) are in LL (R* x R x R¢). Then,
by using the theorem and the fact that 35 is Lipschitz continuous, it follows

that T8s(In(1+ f)) = B5(In(1+ £)) - T(In(1+ f)). But G5(In(1+ f)) = 17
by direct inspection, so that

75, (a1 + 1)) = LLI
in the sense of distributions. As Bs(In(1 + f)) = } In(1 +6f),
(A.3) T3 n(1+5f) = -‘12%51-}1

in the sense of distributions for all § > 0.
Let gs := 3In(1 + 6f). By (A.3) and the theorem, g(s is, for al-
most all z, § e §RN and for all § > 0, absolutely continuous with respect

to t, and 1+6} € LL_[0,00). Since f# = e9f — 1, f# is also abso-

lutely continuous with respect to t for almost all z,£, and consequently
Q*(f, /)* € LL.[0,00) for almost all z,£. Finally, by the theorem for all
t>62>0

t

O -6 = [ [smQU N do aezg

8
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and as § — 0, this becomes

t
f#(xa §, t) - f#(ili, & S) = /Q(fv f)#(iL‘, 3 U) do.

ii) If f is a mild solution then f# is absolutely continuous with respect
to t for almost all 2,6 € ®¢ and so is In(1 + f#). Clearly, g = In(1 +
f) satisfies g#(t) — g#(s) = [ i Q(f, f)¥ do. The rest follows from
Theorem 5.A.1. a



6

The Initial Value Problem for the
Homogeneous Boltzmann Equation

6.1 An Existence Theorem for a Modified Equation

In this chapter we treat the spatially homogeneous Boltzmann equation,
i.e., the special case where f does not depend on z. In this case the main
difficulty in estimating the collision operator, namely, the pointwise inter-
action, disappears, and we can develop a rather complete and satisfactory
theory. The remaining difficulties are due to large velocities (high energy
tails).

We shall use some of the classical arguments already employed in Chap-
ter 5 Section 3. We repeat these arguments here in some detail, in order
to make this chapter, which is conceptually easier than the general theory
from Section 5.3, as self-contained as possible.

The initial value problem associated with the homogeneous equation
is

atf = Q(f7 f)
1.1
where @ is given by (3.1.2). To simplify notation, we shall sometimes just
write Q(f) for Q(f, f).

We first show that if we neglect large relative velocities in the collision
operator, the initial value problem is easily solvable.
Let us define the symmetrized collision operator with cutoff by:
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QM(f»g) =% f dé, fn-(g—g.)zo dnn- (6 - f*) XM(!€ - 5*!)
{f'9+d'fi — f9. — frg}
where xar : RT — R is defined by:

(1.2)

xm(r)=1ifr <M

1.3
(1.3) xnm(r) = 0 otherwise.

Consider the initial value problem:
B f™M = QY (M, M)
fM(" 0) = fo-

The physical meaning of Problem (1.4) is that the molecules of the gas
behave like in the Boltzmann dynamics, but if two molecules collide with
the modulus of the relative velocity larger than M, they ignore each other.
It is easy to verify, at least at a formal level, that the conservation laws and
the H-theorem established in Chapter 3 are still valid.

By an obvious application of the measure-preserving property of the
collision transformation, we have:

(1.5) 1QM (£, f)ll: < CM | flI2,

(1.4)

1QY (£, 1) - Q¥ (g9,9) I
(1.6) =1QY(f +9,f ~ 9)lw:
SCM|\f +gllc2lf — gllzr-

C, here and in the sequel, stands for a numerical constant.

The inequalities (1.5-6) allow us to construct a local solution to Prob-
lem (1.4): fM e C*([0,T]; L*) for a sufficiently small time T’ > 0, by means
of the standard iteration scheme.

Assuming the initial datum positive and normalized, i.e.:

(L.7) /%ﬂ0=1

by the identity (3.1.15) (mass conservation), we conclude that:

(1.8) /dg M, t)=1forallte0,T]

If we could prove that the solution we have found is non-negative we
would be in a position to extend the solution to arbitrary times. In fact, by
positivity and (1.8) it follows that the L!- norm of the solution is preserved
in time and, since T depends only on the initial L!-norm of the solution we
are allowed to extend the procedure up to time 27, and so on. However,
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the non-negativity of the solution is not obvious, although it is suggested
by physical considerations.

We use the following trick to prove non-negativity. Consider the initial
value problem

dg +ng=TIM(g)

(19) 9(-0) = fo
where:
(1.10) ™(g) =Q(g) +ug/d£ g9(¢)

and g > 0 will be chosen (sufficiently large) later. Notice that we have

already found a local solution f™ to Problem (1.9) because of (1.8). There-

fore, if we prove the existence of a positive solution to Problem (1.9) we

have also proved that fM is positive, because I'M is Lipschitz continuous,

and hence the initial value problem (1.9) has a unique solution. Thus, we

focus on proving the existence of a non-negative solution to Problem (1.9).
To this end, let:

i
gn = e Mt fO +/ ds e—u(t—s) FM(gn——l)
0

g’ =0

(1.11)

We observe that for sufficiently large 1 , I'™ is a positive monotone operator
in the sense that

(1.12) ™f)>r"(g)if f>g>0.
In fact, denoting by Q¥ and QM the gain and loss part of the collision

operator QM

(1.13a)
QU(f0) =} [dew [ crson: (E—£) 2 0 xullE — EDF + 911}

(1.13b)

QM(f) = / dt. / dnn-(6—£&) 20 xallE - &) FEFE)
n-(£—-£.)>0

=aet RM(£)f,
we have, by using symmetry properties:
™) -r*g) = Q¥ (f+9,f ~9)
(1.14) — 3 {(f +9RM(f - 9) + (f - 9)RM(f +9)}
+au{(f+9) J(f -9 +(f-9) [(F+9)}

Hence the positivity property follows by the obvious inequality
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RM(f) < OM / dt f(€)

which is valid for positive f. Consequently g" > g"~! - is a monotonically
increasing sequence.
Moreover:

t 2
(1.15) /g" = e Mt 4 u/ ds e H(t=9) (/g"_1> ,
0

which implies that if [¢g"~! <1 then [ g™ < 1. By Beppo Levi’s theorem,
the limit
(1.16) g= lim ¢g"

n—oo

exists, is non-negative, and satisfies:

(1.17) /g <1

It is now straightforward to prove that g solves the initial value problem
(1.9) (see Problem 2) so that g = f™. In particular the equality sign holds
in (1.17). Thus we have proven the first part of the following theorem.

(6.1.1) Theorem. There ezists a unique positive solution fM € C*([0,T}; L!)
to the initial value problem (1.4) for arbitrary times T > 0, provided that
fo>0and [ fo=1.

Suppose in addition that E(fo) = % [£2fo(€) and H(fo) = [ foln fo
(energy and entropy) are initially ﬁnite Then

(1.18) E(fo) = E (fM())
(1.19) H (M(t)) < H(fo).

To complete the proof of the theorem, we only need to prove Identity
(1.18) and Inequality (1.19). The energy conservation follows easily by gen-
eral arguments [see (3.1.15)]. The proof of (1.19) is a little technical and
requires some knowledge of the L°°- theory presented later. We outline it
in Appendix 6.A.

Problems

1. Consider the initial value problem (1.4) for an arbitary fo € L' (not
necessarily non-negative) and give an estimate of the time 7' of exis-
tence of the local solution.

2. Prove that g defined by (1.16) satisfies the initial value problem (1.9).
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6.2 Removing the Cutoff: The L!-Theory for the
Full Equation

We now study the behavior of the solutions in the limit M — oco. Our
target is to obtain a solution to the original initial value problem (1.1). The
shortest way to obtain a limit for the squence f™ is to use the Dunford-
Pettis compactness criterion which we already used in Chapter 5 (see step
8 of Section 5.3). For the reader’s convenience, we now adapt some of the
estimates from Chapter 5 to the current situation. By energy conservation:

1 2F
en [ Mendes g [etenaes

where E = E (fo) = § [ € fo(€) is the conserved energy. Moreover, if A
is a set such that fA d¢ < €, we have from the H-theorem and the energy
inequality, for a > 1:

(2.2)

[ e

A

< la/ FME ) In FME, ) dE X(pm(t)>a) + a€
A

~Ina
1
< m/fM(E,t) In fM(&,t) xpm(ty>1) + ae

- H(f)
~ Ina

< H(fo)
= Ina

1
+ae— — / FME ) I fM(E, 1) dE xqpm )<y

1
+ ae — m/fM(&t) In fM(€,t) d€ X{exp(~£2)<M(t)<1}

1
B E/fM(f’ £)In FY(€,8) 48 X (1M (1) <exp(—£2))
< H(fo)

~ Ilna

ract o [ [P0 [en—ter) )

(because z? |Inz| is bounded if x < 1,

and after choosing @ = ¢ %)

2H
<2 | e ca+E)/me
Ine
Thus we can apply the Dunford-Pettis theorem to the set {f™} in
LY([0,T) x R3) to extract a weakly convergent subsequence with limit f €
LY([0, T]xR3). Obviously f > 0. Moreover, f satisfies the energy inequality:

(2.3) / €21(€,t)dE < / €2 fol€)de for a.a. t € [0,T].
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In fact, by definition of weak convergence:

T T
(2.4) /0 o(t) / it () E257(€) de dt — /0 6(t) / xir () E25(€) de dt

where:

riflr|<H
(25) X (r) { 0 otherwise

and ¢ € C([0,T)).
Therefore, for positive ¢ :

T T
(26) 3 [ o0 [eroaas [ s

implying (2.3).
To prove that f is a solution of the Boltzmann equation we have to
prove the convergence of the collision operators:

Q"(f", fm) = QY (f", /") = Q(f, f)-

Here M, denotes the sequence M, — oo for which we have the weak
convergence of the sequence f™.

Before approaching this problem, we need to establish an inequality
that will turn out to be very useful in the sequel. We introduce the following
family of norms:

(27) I = [ +€)7215(6)1de
and the associated family of Banach spaces

(2.8) Ly = {f; I fll1,s < o0}.

Then we have the following lemma.

( 6.2.1) Lemma. (Povzner’) Suppose that s > 2, f,g € L, and f > 0,
g 2 0. Then the following inequality is true:

(2.9) /(1 +€)°2Q(f, 9)ld€ < C(s){I1fllv,s llgllz,2 + llghs 1 £ll1,2}-

For the proof see Appendix 6.B.
Remark. We can replace Q by QM in (2.9), with C(s) independent of M.

The Povzner inequality generalizes, in a sense, the conservation of the
energy, taking into account compensation between the gain and the loss
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terms. If one wants to bound the gain and loss terms separately in the s-
norm (2.7), one would need to introduce an s+ 1— norm of f. However, the
positivity of the solution and Inequality (2.9) together allow us to control
the solution in the s— norm. In fact, by the use of (2.9) we easily obtain:

t
(210) M@l < 1FO)1,s + C(S)/O arl| M Ol (2.
Thus, by the energy bound (2.3) and Gronwall’s inequality,

(2.11) 17O ll1s < 1(O)l1.s exp (C(s) E).

As we shall see in the sequel, the bound (2.11) may be considerably im-
proved by a time-independent estimate.

We return to the problem of the convergence of the collision operator.
By the trivial inequality

(212)  RM(fE <C / € = E.1F(E)de < CUENN Il + 1 ll2)

(here, and from now on in this chapter, we abbreviate ||f|l1 = ||fllzr =
|l fll1,0 ) we obtain, by using the Lebesgue measure invariance of the collision
transformation:

QY ()2
=l f RM(f)ll1,2

<C [(+€) 1O N+ 171 )t
<C{lIfllLallflls + 1713 2}
Therefore, by (2.13) and (2.11), provided that fo € L},

(2.13)

¢
@19 1O - MOha < [ drIQM (7Y0) lha < O =1l
From a standard equicontinuity argument it follows that
fec(o,T) L)

and that we can extract a subsequence, again denoted by f™(¢), which
converges weakly in L'(R3) to f(¢), for all ¢ € [0, T]. Therefore:

(2.15) / dE dt. B(E,6) FH(€) P(Es) — / de de. B(E, £.) F(6) F(£2)

for t € [0,T], ¢ € Loo(R® x R3).
Finally, for ¢ € Loo(R%) :
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| [@rum - @@t

sl / dede, / PRCEN(ETS
(2.16) X xa(l€ = &N &) {FME) (&) — F(E) (&)}

+Cllélloe ({ / de de. (I + 1) 1O (6

)

where A is fixed. The first term on the right-hand side of (2.16) vanishes
as n — 0o. The last two terms can be made arbitrarily small, as A is large,
because of the energy inequality and mass conservation.

The weak convergence of the loss term follows the same lines. This is
enough to conclude that f solves the initial value problem for the Boltzmann
equation in integral form. We finally remark that, by virtue of Estimate
(2.13), we can integrate this integral equation against ¢2 to obtain the
energy conservation. Summarizing, we have the following.

* l/ de de.(I€] + |€.]) F(€)F (&)
|€l>A/2

(6.2.2) Lemma. Let fo > 0 be an initial value with finite entropy and such
that fo € LY. Then, there exists f € C([0,T]; L3) satisfying:

(217) ) = fo+ /0 ds Q (£(s), £(5)).

In addition f(t) € L and estimate (2.11) holds. Finally ||f(t)]1 = 1, and
the energy is constant in time.

The reader may feel unsatisfied by a nonconstructive argument in find-
ing a possibly nonunique solution, a priori. We shall discuss other more con-
structive approaches later. For now we shall prove a uniqueness theorem
and some regularity properties.

(6.2.3) Theorem. Let fo > 0 be an initial datum with finite entropy such
that fo € LY. Then there ezists a unique f € C*([0,T); L!) satisfying:

6tf:Q(f7f)

(here the time derivative is understood in the L-sense).
Moreover f(t) € L, Estimate (2.13), and the H-theorem in the form

(2.19) H (f(®)) < H(fo)
hold.

(2.18)
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Proof. The following inequalities follow from trivial computations:

(2.20) 1Q+(f, Dll1s < C){lIflet1llglly + Nlgllr,araliFll2}

221)  |IfR(g) + gR(Hllrs < C{lIfl,s+1llglls + llglln,s42ll fllL}-
Therefore, by (2.20), (2.21), and (2.11):

222) () = F()lhe < / drl[Q (F(r), F(7)) e < C(s, )t — 1]

provided that fo € L; g41. Furthermore,

t+h
ey [ anlQUE)+ @ £) - FE) e

fE+h) - £

R THONI0)

1,2

t+h
<Ch™! / drllf(r) + O lall () = FOllva
<Ch.

This proves the strong differentiability of the solution in L. We are
now in a position to prove the uniqueness of the solution. To this end,
suppose that f and g are two solutions for the same initial value. By the
strong differentiability in L; » we get (see Problem 5):

Z1076) - 9@z

(2.24)
= /d£(1 +€%) sgn (F(t) - 9(1)QUf(t) + 9(t)), (F(t) — 9(t)).

The right-hand side of (2.24) can be expanded in the following way:

d¢ [ de’ [ dnn-(€—&)(1+E) sgn (f —g)(€)
Je«]

{(f+9)(E)(f — g)(&')+(f+g)(£’)(f 9(E)
= (f+ 9 —9)©) - (F+9©(f - 9)(&)}

< [t [ag [ann -+

{(f +9)ENSf —gl€) + (fF +9)(ENS — gl(&)
(2.25) = (F+9)ENf —gl€) + (fF+9)(E(f - 9)(€0)}

(using the identity sgn « - ¢ = |z]).
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Since the first and third terms on the right-hand side of (2.24) com-
pensate exactly, we have:

(226) SO~ 9Ol < CIFE) ~ 9@ 2l 70) +9Olhs,
which implies:

(2.27) 1f(t) — g2 < C(DM)|| fo— gollr,2

via the Gronwall lemma. Here go denotes the initial datum of g(t).

From (2.27) we deduce the Lipschitz continuity of the solution with
respect to the initial datum and the uniqueness of the solution we have
found so far.

The entropy inequality follows from the following argument. We estab-
lished the inequality:

(2.28) H(fM () < H(fo).

Since the entropy is a nonlinear functional, we cannot simply obtain the
entropy inequality by taking the limit M — oo, because fM converges only
weakly. However, it is a known fact that if f, converges weakly to f, and
H is a convex functional (as the entropy is), then:

(2.29) H(f) < liminf H(f,).
This remark concludes the proof. O
Problems

1. After applying the Dunford-Pettis theorem, prove that R(f™) con-
verges to R(f) as M — oo, uniformly in £ on compact sets.

2. For fy and go positive and normalized, consider fM(t) and gM(t) as
solutions of the initial value problem (1.4) with initial data fo and go.

Prove that
IF4(@) — g™ @)l < C@)llfo — golla-

3. Prove the lower bound
M) > foexp(—~CMt).

4. For fy such that || folleo < A prove the existence of a small time T such
that, for t < T
If )l < 24.

Hint: Prove the estimate |Q+(f)| < C(M)|| fllco-
5. Prove Formula (2.24). Hint: For any smooth v prove that

a4 / d A(F(£)(1 + €2/ = / de v (FO)QU ) (1 + €2)°/2.
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Let 4. be a mollified version of | - | such that v.(z) — |z| as ¢ — 0.
Write the identity in integral form and take the limit € — 0.
Realize that

/d€ sgn (FENQ(F(8)(1 + £2)%/2

is integrable in ¢ to prove the claim.

6.3 The L*°-Theory and Classical Solutions

A very natural question arising after constructing a solution for the spa-
tially homogeneous Boltzmann initial value problem is whether the solution
preserves some smoothness properties of the initial datum. A preliminary
question is to give L°°-bounds on the solution, assuming that fy is essen-
tially bounded. To do this, we need a more appropriate description of the
gain part of the collision operator. The main difficulty in handling the gain
operator is that it is expressed in terms of the outgoing velocities, which are
linearly dependent on the incoming velocities. A more direct representation
formula for @4 can be given as follows. Let us recall the collision equations:

f=¢6—n-(£-&)n
(3.1) L =& +n-(§—E&)n.
Consider the sphere of diameter |€ — £, centered at & = ﬁ'igi and denote
it by k(&, &) (see Fig. 26).

The intersection point of the sphere k with the line passing through &
in the direction of n represents ¢’. Hence, by direct inspection:

(3.2) -8 -E&-¢=0.

Thus, for £ and & fixed, &, lies in the plane E¢. orthogonal to £ — €. For
fixed £, we can treat £’ and &, as independent variables in the definition of
Q.+, and write:

(33) o- [ dﬁlg, 5, / de. 1(€1)

Eger

where the integration on d¢’, is restricted to the plane E¢¢r. This formula
can be derived either by a direct computation or as a consequence of the
representation formula,

Ga) [ dea©QunE) = /ds/dg*ﬂf o /¢ " do (e
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FIGURE 26.

which is valid for any continuous ¢. Here, do denotes the surface element
in k(&,&.). We suggest the proof of (3.4) as an exercise (Problem 1). How-
ever, both formulas are relevant for proving the desired L°>°-bounds on the
solution and will be proved in Appendix 6.C.

We set:
(35) 18) = [ & 5(¢)
E
where F is a given plane and
(36) 1) = [ . &L

It is clear that we can control the time derivatives of I(E) and I(§), respec-
tively, by means of

3.7 / de QL (1))
E

for a given plane E and

Q+(f)(&)

3.8) / “Tezel



6.3 The L°°-Theory and Classical Solutions 179

for I(£). Denoting by d = d(&, E) the distance between the plane E and &,
the expression in (3.7) can be written as

iy | Q+(f)<£)9—’%’-(~i)-‘f72ff d¢

i () SR P(EE)/e
oo [ [l [ w@==T0

(6!&‘)

r / de dt. 0f(6)f(£L)

where 8 = 1 if kN E # 0 and 6 = 0 otherwise. We have also used that
|€ — £,] is invariant under the collision transformation. Therefore:

(3.10) (3.7 < .
Moreover:
§1)f(€2
(3.11) (3.8) = /d§ /d£ |€1 (g/{)/K & do(¢') < 2m.

The last step follows by the following inequality

1 ,
(3.12) | ae@< [ g e©

k(&1,€2) k(£1,€2)

where §; = géi,f—‘—z is the center of the sphere k(€,&;) of diameter |£ — &;1.
The inequality says that the potential generated by a spherically symmetric
distribution of superficial charges takes its maximum at the center of the
sphere (see Problem 2). By (3.3), (3.10), and (3.11) we can conclude that:

(3.13) £ Q. (7(1) < 4
from which:
(3.14) F(4,6) < fo€) + Qs (fo) ()t + 2m°¢2.

This argument is not completely rigorous. The solution we constructed in
the previous theorems exists in L! so that its integral on a plane or in a
sphere is not even defined. However, I(§) and I(E¢./) make sense for almost
all £ in R® and almost all £ and ¢ in %3 x R3. Everything can be made
rigorous without any significant effort to obtain an L*°-bound of f(t) in
terms of || folleo and Q4 (fo)llco-

The estimate (3.13) can be improved toward a time-independent esti-
mate. Actually, one can prove

(3.15) sup If o < C(fo)
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by establishing a lower bound for the loss term:

(6.3.1) Lemma. Suppose that fo > 0 with finite energy and entropy. Then:

(3.16) R(f(t)) = C(fo)(1 + [£]),
where C(fo) depends only on || foll1,2 and H(fo).
Proof.

R(f)(€)

> / € — £, f(€.) de.
> / € — & F(E) dEnt

[€—E]>A
(3.17) ZA( f- f)
/ |§“5[SA
1
2A(||f|l1‘"ﬂl—§ / fInfx¢spy — / fX(fsa))
[€-£&1|<A [€-£.1<A

24 (Il - 3 - Bea®).

Here x} denotes the characteristic function of the set {}. Now choosing A
and B suitably, we can find C > 0 [(depending only on || f||; and H(f)] for
which

(3.18) R(f)(§) 2 C.

: 3 f
Finally, for J-il > b

319) RO [16-610) dee 2 €171 = Iz > 5l€l 1511
Combining (3.19) with (3.18) completes the proof. a

By virtue of Lemma 6.3.1, the earlier estimates can be improved in the
following way:

dI(E)

(3.20) — +CIEY< =
(3.21) dId(g) +CI(¢) < 4n?

yielding bounds on ||@Q+(f(t))|lcc uniform in time. Also, from the estimate
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t

(3:22) fO < e o+ [ ds e OIQ(f(5)
0
we finally obtain bounds on || f(t)|/cc that are uniform in time.
The continuity in time of the solution f(¢,£) follows from the fact that

|Q] is pointwise bounded, as follows from the bounds on ) and the obvious
inequality:

(3.23) R(f)(€) < C(1+[¢]).
This also implies the continuity in time of Q(f(¢))(§) and hence the differ-

entiability of f(¢,£) in time. Summarizing, we have the following theorem.

6.3.2) Theorem. Suppose that f(£) < ~——%< with s > 6. Then the solu-
(1+£2)*/

tion of the Boltzmann equation f(t,£) satisfies:

(3.24) sup [|f(t)lleo < C,
teR+

where C depends only on fo. In addition, for almost all £ € R® and all
t € RY, f(t,€) is differentiable in time and

(3.25) of=Q(f) pointwise.

Remark. Strictly speaking, if we want ||foll14 < +00, we need s > T.
However, it is enough to require || fol|1,3 < 400 if we do not insist on strong
differentiability.

Problems

1. Prove the identity (3.4).

2. Show that the potential generated by two identical charges takes the
maximum in the middle point of the segment joining the two charges.
Use this fact to prove the inequality (3.12).

3. Suppose that fo > e~*¢". Prove that

F(&,t) > ce™ /28,

Hint: Use the bound (3.23) and observe that the inequality does not
make any use of the H-theorem.
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6.4 Long Time Behavior

Physics and the formal version of the H-theorem suggest, as discussed in
Chapter 3 Section 4, that the solution of the Boltzmann equation f(t)
should converge to a Maxwellian

(4.1) M(€) = Aexp(—B|¢ - v]?)

where the parameters A, 3,v are determined by the conserved quantities
mass, energy, and momentum of the intial density f;. We know already
(see Chapter III) that the H-functional, when restricted to positive L!-
functions with assigned mass, energy, and momentum, takes its minimum
value on the corresponding Maxwellian distribution. We also know that the
H-functional is decreasing in time. Combining these facts with a careful
study of the collision terms, we can prove the convergence of the solution
to a Maxwellian.

(6.4.1) Theorem. Under the hypotheses of Theorem 6.3.2, f(t) converges
weakly to a Mazwellian, i.e., for all g € Lo (R3)

(12) tim [ de g(@r(e) = [ d ate)M(e).

Proof. H(f(t)) is decreasing. By monotonicity H'(f(t)) exists almost ev-
erywhere. The negative function:

| ffe
(4.3) Z(f fe “ff*)lnf,—ﬂ

is therefore integrable (with respect to d§ d€. dn n - (§ — &)X {n-(e—£.)>0}
for almost all ¢ > 0.
Since H is bounded from below we have that

(4.4) /H'(f(s)) ds < 400
0

and so we can find a sequence t,,t, — 00, such that
. 1 _
(45) Jim H'(f(ta)) = 0.

By the Dunford—Pettis theorem, we can extract a weakly convergent sub-
sequence (still denoted by f(t,) = fn) to some ¢. To prove the theorem, it
is enough to prove that the collision equation

(4.6) P, — dp. =0
is satisfied. Indeed, for D = sup f(¢,t), we have
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/ 18/, — b6.[? < liminf / Fofos = fufml?  (by 2.29)

< D2 11m1nf/lf;;f1,w - fnfn*l ln—;—z’zz—*
(because In ;"f"* > D72|f! f! . — fnfns|;see Problem 1)
(4.7) = D?lim inf / (fofl. = fafne)In f"f"* =0.
nl

Problem

1. Verify (4.7) by proving that if 0 < z,y, z.,y« < D, then

Y
Tals |

1
Dz |2y = uys| < | In

Hint: Reduce it to the inequality z — 1 > In z, valid for 0 < z.

6.5 Further Developments and Comments

The literature concerning the homogeneous Boltzmann equation is rather
extensive. Here, we limit ourselves to commenting on the references we
believe to be of some relevance in connection with the theory as developed
in this chapter.

The first result on the theory of the existence of the solutions of the
homogeneous Boltzmann equation was obtained by T. Carleman in 19324
In this paper, he proved the existence of a unique solution for the homoge-
neous initial value problem in the particular case in which f depends only
on |¢] and t.

The treatise Ref. 3, which appeared posthumously, develops the clas-
sical theory of the homogeneous equation for continuous bounded initial
data fo such that:

(5.1) sup fo(§)(1+ &))" < +00 526
4
Starting from the representation formulas for the collision operator and the

analysis presented in Section 4, Carleman constructed a unique solution
satisfying the uniform estimate:

(5.2) sup f(&,t)(1+€%)*2 < C.
&t
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He also established the approach to equilibrium in the uniform norm,
using an equicontinuity property to apply the Ascoli-Arzeld theorem in-
stead of the Dunford-Pettis criterion.

This monograph is fundamental in the history of the kinetic theory
of gases, because it presented far-reaching new mathematical ideas and
constituted, from a methodological point of view, the first rigorous and
modern approach to the Boltzmann equation.

Many years later, L. Arkeryd ! developed an L!-theory (for a very gen-
eral class of interaction kernels, including the case of hard spheres) along the
same lines presented in the earlier section of this chapter. The monotonicity
argument for the cutoff interaction is related to a paper by Morgenstern 8,
who developed an L'-theory for the Maxwell molecules.

In Ref. 1 the cutoff M is removed by compactness, but also by mono-
tonicity. The argument is subtle and interesting. We sketch it here.

Given f and fM as in Section 1, define g™ to be the solution of the
initial value problem

(5.3) 3 g™ + hg™ = Q¥ (g™) — g™ R(g™) + G(g™),
where:

(5.4) h(€) = p(1 + &%)| foll1,2

(5.5) G(g™) = p(1 + €)||lgMll1,2 g (€).

For p sufficiently large it follows that

(5.6) 0<gM<gM <f (if M<M)
and
(5.7) oM < M.

Therefore, the difference f — fM can be estimated in terms of the
differences

(5.8) AM, = fM _gM and AM, = f — gM.

By virtue of the positivity of AM; and AM,, we can easily obtain the
estimate:

d
(5.9) P |AMi 1,2 < w(M) + C|lFM |14 1AMy |l 2

where w(M) — 0 as M — oo.
In Ref. 1 it is also shown how to prove uniform estimates like:

(5.10) sup f®lh,s <C
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where C' depends only on fy. The weak convergence to a Maxwellian is also
proved for general L! data.

The L*-theory 3 and the L!-theory ! can be combined to give an
LP-theory, as discussed by Gustafsson 7.

The strong differentiability of the solution in L! was investigated by
DiBlasio 5. This property allows us to establish the differentiability of the
solution with respect to the initial datum.

Regarding the asymptotic behavior of the solution, we remark that the
attractivity of the Maxwellian in the weak topology proved above (but, as
mentioned, also valid in the uniform topology) does not imply the stability
of the equilibrium in the sense of Liapunov. In the theory of differential
equations, one can find examples of critical points that are attractive but
not stable. Concerning stability results for the global equilibrium, we men-
tion the work by Arkeryd et al. 2

Finally, we quote a result due to Elmroth ¢ in which the L!-convergence
to the Maxwellian follows from the weak convergence. To get the result, one
combines the content of our Theorem 6.4.1 with the discussion in Chapter
3, Section 4.
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Appendix 6.A

Proof of the H-Theorem

The proof of the H-theorem in the form of Inequality (1.19) can be orga-
nized in five steps:

1)

2)

3)

5)

Fix an arbitrary time T, then if || fo||oo < C then sup,<r ||fM(t)|lco <
C. -

Replace fo by f§ = min[n, max(fo, eﬁ’%—g—ﬁ)] and denote by f™M(t)
the solution of the corresponding initial value problem. For these
F™M(t) the usual arguments yielding the “formal” H-theorem can be
used to prove:

(4.1) H(f™M(1)) < H(f3)-

Prove the inequality:

(4.2) H(fg") < H(fo)-

Prove that:

(4.3) IfM@) ~ MO =0 as n— co.

Extract a subsequence (still denoted by f™*(t)) converging to f(t)
and prove the claim:

(4.4) H(fM(t)) < H(fo)-
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Proof.

Step 1. This was proved in connection with the L>°-theory. Notice that we
make use of the H-theorem (which we are going to prove) only to prove
estimates uniform in time, thereby avoiding a loop!

Step 2. One can prove the inequality:
(A.5) C(n,t)exp(~€%) < fM(€,1) < C

(see Section 3, Problem 3). Then the usual arguments used in the formal
proof of the H-theorem work.

Step 3. This follows by direct inspection.

Step 4. The Lipschitz continuity of f*(¢) with respect to the initial condi-
tion (see Section 2, Problem 2) yields

(46) M)~ MO < NS~ folh =0 as n— oo
Step 5.

[ de 10 M @xgecm = lim [ d€ /4010 M Oxgercn
(by the dominated convergence theorem)

H(fo) Zlim/dé M) In M t)xe>r)

X {X(#M (t)<exp(—€2)) T X(F2exp(—£2) }
(by steps 2 and 3)

H(fo) > lim / de/FM In foM (8)x((€] > R) exp(—)x(FM(2) < 1)
+ lim / de f™M|glx (€| > R)
(A7) <H(fo)-C / dt x(JE] > R) exp(—€?) + R / de fol£)€2.

(Because of the energy conservation and the fact that /zlnz is bounded
for z < 1.) The claim follows by taking the limit R — oo. O
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Proof of Lemma 6.2.1

For a and b positive numbers, b > a and any ~ € [0, 1]:

(B.1) (a+b)° <a®+b*+271* la <a® +b°+ 2710,
and hence for positive @ and b :

(B.2) @ +b <(a+b°*<a’®+b°+COH* 7" +a° ).

As a consequence of (B.2) and the energy conservation for v € [0, 2]:

(L+€%) 2+ (1+€2)"2 - (1+ €77 = (1+ €D
(B3) <G+ +E)E2 4+ 1+ 21+,
Now, the right-hand side of (2.9) can be written as:

; / d devdnn - (€= &)[(1+€%)Y" + (1+€2)*2

n-(£-£.)20

(B.4) ~ (1+€)"2 = (1+ &)1 f(€) £ (§).
By using the obvious inequality:
(B.5) € — &l < 1+ )21 +EDY?

and choosing v = 1 in (B.3), we easily get inequality (2.9).
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Proof of Formula (3.4)

By the invariance of the Lebesgue measure with respect to the collision
transformation, we have:

(1)
[asean©= [« [darone) [ ne-aee.

n-(§—£1)20

Recalling the collision laws, one can replace the integration over the unit
sphere by the integration over the sphere k (see Fig. 26). A simple analysis
of the Jacobian of the transformation yields:

NN o(€)
(2 / n- (€ - £)9(¢) = / ¢(£)|g a
n-(6—£.)>0 k(£.8.)

Proof of Formula (3.3)

For a fixed &, choose ¢(¢') = (e,r;sn exp ((5125)2). Then:



190 Appendix 6.C

Q:(N(E©) = limy [ &1 6(6)Q4(1)(E)

(C.3) = lim / dg, / de, L !(él) (57) 3)
where:
I M2
(C.4) 1) = / ﬁexp (—(5 - 3 ) do(£).
k(£1,€2)

Introducing the middle point & = g—‘ig—zl and using the obvious identity:

(C.5) € -*=E &)+ (&+O*+2(¢ —&) (& +¢)

we can perform explicitly the integral (C.4) to obtain:
(C.6)
1€ =&l

1) = 5en 7 — 2

fom (il B8 e (- ai+ B3]

Inserting this expression in (C.3), we realize that the contribution of the
second term in the right-hand side of (C.6) vanishes in the limit. The first
one describes the effect of a one-dimensional § function concentrated on the
set |€ — &o| = &1 — &2]/2, which is equivalent to the plane (£ — &) - (& — €).
This completes the proof.
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Perturbations of Equilibria and
Space Homogeneous Solutions

7.1. The Linearized Collision Operator

Our first aim in this chapter will be to find a global solution f = f(z,§,t)
of the Cauchy problem for the Boltzmann equation for hard spheres:

of of
1.1 - . S
(L) e L =qup)
when f is close to some absolute Maxwellian M, which without loss of
generality (thanks to possible scalings and choice of a suitable reference
frame) can be assumed to be (2m)~%/2 exp(—¢2/2). To this end we introduce
a new unknown h related to the distribution function f by

(1.2) f=M+MY2h

The Boltzmann equation (1.1) takes on the form:

oh oh
5 t& 5 =Lh+ T(hh)

where L is the linearized collision operator defined by:

(1.3)

(1.4) Lh = 2M~Y2Q(M"?h, M)
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[here @ is the bilinear operator defined in Eq. (3.1.3)] and I'(h,h) is the
nonlinear part, which should be small compared to the linear part, and is
given by:

(1.5) I(g,h) = M~'2Q(M"?g, M*/?h)

with g = h.
A more explicit expression of Lh reads as follows

(1.6) Lh= / / (W'R. + R'R, — Rh, — hR,)R,|V - n|d¢,dn
®s Js2

where, for convenience, R denotes M'/2 and we took into account that
M'M] = MM,. Because of Eq. (3.1.10) (with Rh in place of f, M in place
of g and g/R in place of ¢), we have the identity:

/ gLhdf = — 1/ / / (WR. + R'K. — hR. — Rh.)
(1.7) 3 4 Jps Jys Js2
x (¢'R, + R'g, — gR. — Rg.)|V - n|d¢.d€dn.

This relation expresses a basic property of the linearized collision term.
In order to make it clear, let us introduce the Hilbert space of square
summable functions of £ endowed with the scalar product

(1.8 (o.m) = [ hae

where the bar denotes complex conjugation. Then Eq. (1.7) (with § in place
of g) gives (thanks to the symmetry of the expression on the right-hand side
(1.7) with respect to the interchange g < h):

(1.9 (g,Lh) = (Lg, h).
Further:
(1.10) (h,Lh) <0,

and the equality sign holds if and only if

(1.11) /R +h,/R,—h/R~h./R. =0,

i.e., unless h/R is a collision invariant.
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Egs. (1.9) and (1.10) indicate that the operator L (provided it is taken
with its maximal domain in L?) is self-adjoint and nonpositive in L2. In
order to exploit these and other good properties of L, we shall introduce
the operator

(1.12) B=L—§‘5%

and write Eq. (1.3) in the following integral form:

(1.13) h(t) = T(t)h(0) + /0 dsT(t — s)['(h(s), h(s))

where T'(t) is the semigroup generated by B. We can hope that in some
norm (see Lemma 2.6):

(1.14) I TR ISCHARI

then if we could prove (and this would be the crucial estimate) that, for
some positive c,

(1.15) I T() < Ce™

we would have

(1.16) | (2) [I< Ce™ || h(0) || +/0 ds e°=2) || h(s) |I* .
If we let |
(1.17) h = sup, || h(t)e® |

we arrive at

(1.18) h < C || h(0) || +Ch?

which implies that h is bounded whenever || h(0) || is small.
Unfortunately this strategy cannot be followed so easily. In fact since
the dissipative part of B is contained in L, one would like to prove Eq.
(1.15) for the semigroup generated by L itself. L, however, has five linearly
independent eigenfunctions corresponding to the zero eigenvalue; these are
the functions h such that h/R is a collision invariant, because then Eq.
(1.11) holds and, according to Eq. (1.6), Lh vanishes. Then T'(¢t)h = h for
any linear combination of these eigenfunctions and the desired property
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does not hold for the semigroup generated by L. The operator ¢ - 8/0z,
however, generates a semigroup, which, although norm-preserving, has the
tendency to spread the molecular distribution in a uniform way; this will
help in obtaining the desired estimate in R3. In fact to prove this estimate
will be our major aim in the following sections. This will require a prelim-
inary study of the spectral properties of L and of the Fourier transform of
B, B(k).

7.2 The Basic Properties of the Linearized
Collision Operator

In order to study the linearized collision operator L, given by Eq. (1.6), we
start by remarking that we can split L as K — v(|{|)I, where K = K3 — K,
is an integral operator, I the identity, and v a function bounded from below
by a constant vy and from above by a linear function. Specifically

V(|51)=fw /S M, |V - n|dé.dn
(2:1) gin=R(eD [ [ hR.IV - nide.an

Koh = / / (WR, + R f))R.|V - n|dé.dn
®3 Js2

It is easy to pick out the kernel of K1, k;(&,&,) by inspection:

(2.2) k1(§, &) = ml€ — &I R(IEDR(E)-

To find the kernel of K requires a little more work. To reduce it a little bit
we use a trick. Let us consider a unit vector m that lies in the plane of V'
and n and is orthogonal to n. We can then write V =n(n-V)+m(m-V),
which implies £ —n(n-V) =& +m(m-V), & +n(n-V) =& —m(m - V);
thus if we use m in place of n in the second part of the integral appearing in
(2.1), it becomes identical to the first, except for the fact that 6 is replaced
by /2 — 6 (and ¢ by ¢ £ 7). But even this difference disappears, because
|V - n|dn = |V|cos@sin8dfd¢ = |V - m | dm. Thus

(2.3) K2h=2/ / h’RLR*IV-nidé*dn=/ / K R, R,|Vi - n|dV.dn
3 Js? 3 J s

where in the last integral n runs over the entire sphere $2 and V, = £, —¢ is
used as integration variable in place of £, (a unit Jacobian transformation).
Next consider the components of V, parallel and perpendicular to n:
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(2.4) Vi = v+ w; v=n(n-V.); w=V,—n(n-V,).

We now perform the integral in Eq. (2.3) in the following order: first w (on a
plane IT perpendicular to n), then v, then n. With n fixed, the replacement
of V, by v and w is just a choice of coordinates. After integrating with
respect to w, we combine the one-dimensional v-integration in the direction
n with the integral with respect to n over the unit sphere to give a three-
dimensional integration over the vector v = |v|n; here we must introduce a
factor 2 because v describes R3 twice (for a given Vi, n and —n give the
same point). Thus since the Jacobian from dv to dnd|v| is |v|?, we have:

(2.5) dndV, = 2|v| 2dvdw
and Eq. (2.3) becomes

(2.6) Kyh = 2/%3 /H h(€ +v)R(€ +v + w)R(¢ + w)|v|  dwdv

where the integral with respect to w over II (the plane through the origin
perpendicular to v) has to be performed first. The kernel of the integral
operator K3 is now clear. Introducing the new variable £, = v + £, the
kernel is:

(2.7) bmm=ma—afLR@+wm@+mm}

where IT is now perpendicular to £ — £,. Since:

(2:8)
€+ wl g +wl® = EHE+2(6+) w2’ = 2Iw+%(£*+£)|2+%|£*—£l2

(2.9) R(& +w)R(E +w) = R2Y?w +27Y2(&, + £))R(27/2 (& - £)).

The vector %(ﬁ* + £) has a part in the plane I, say ¢, which can be elimi-
nated by letting z = w + ¢ (a translation in IT); the remaining part is the
projection on the-direction of &, — &, i.e.,

E—€ _ 16— [P
|§*“£l 2 |£*“§I ‘
By means of Egs. (2.9) and (2.10), Eq. (2.7) becomes:

(210) et
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ka(€,€.) = 2(2m)¥/4)¢, — g7 1R(2 /22l —BL 1612 — 1€ 6" — 17
(2.11) |€, — €]

R(22(E, - £)) /H R(2Y22)dz

The integral is now easily performed with the result (2m)~3/42y = (2m)~1/4
and Eq. (2.11) becomes

(212)  ka(6,.) = dmle. — €[ R(2 1/2‘%’* 'fl’ VRV, - €)).

Finally, we can make more explicit the expression for the collision frequency

(2.13)
v(l&l)

=/ M.V - n|dé.dn
R3 J 52
—r / M(E)IE. — Elde. = / M(€ +v)oldv
R3 R3
—n) /2 [ [ exp(—ig/2 = of/2 = €] cos )l simBlu}a9
—(2m)~ 2] /0 " exp(-[€P/2 - 22 + |elt)de
- /0 " exp(—l€P/2 — /2 — |€lt)i2dt)
~em) e ” exp(—u2/2)(u + ) du

- /ls T’ exp(—u2/2)(u — |¢])du]
1l
—(2m)" 22 / eop(—u?/2)(u® + |€[?)du + 4[€] exp(—[€*/2)]

€l
—(2m)"2[2(€] + I ) / exp(—? [2)du + 2exp(|¢[2/2)]

where we first performed the trivial integration with respect to n, then
changed the integration variable from &, to v = & — £ and transformed
the resulting integral from Cartesian to polar coordinates in velocity space;
then we performed the integration with respect to the angle variables and
changed the name of the remaining integration variable from |v| to ¢ for
convenience; the resulting two integrals in ¢ are first transformed by letting
t = u+ |¢] and t = u — ||, respectively, and then, after expanding the
squares and symplifying, the last step has been performed with a partial
integration. (We remark that the expression for v(|¢]) given by Grad” is
wrong.)
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Thus we have proved the following

(7.2.1) Theorem. The linearized collision operator (defined on the functions
h(.) of L? such that [v(|.)]*/?h(.) is also in L?) is self-adjoint and non-
positive in L?, with a fivefold null eigenspace spanned by M'/24,, where
Yo (@=0,1,2,3,4,5) are the collision invariants. It can be decomposed in
the difference

(2.14) L=K—v(eDI

where v(|€|)is given by (2.138) and satisfies the bound (see Problem 1),

(2.15) 0 < 1o < v(|€]) < vl + [€2)/2

with vy and vy positive numbers, while I is the identity operator and K is
an integral operator with a real measurable symmetric kernel k(€,€.) given
by:

_1(eP—le)? 1

k(€ &) =(2m)7/220¢. — €| exp( - gl =€)

(2.16) 8 & —¢P
— 5l = &l expl~ (P + [6-1)/4).

For later purposes we shall need estimates of this kernel. It is trivial
to prove that

_ 1
(2.17) k(€6 < (cals — €177 + el — & exp(—5lé. — &)
This estimate has the following consequence.

(7.2.2) Theorem. The kernel of the operator K is integrable and square inte-
grable with respect to £,.. The integrals are bounded by a constant, indepen-

dent of €.

Proof. The proof is trivial, thanks to (2.17), because of the exponential
decay of the kernel and the fact that |£, —&|™! and |€, —£|~2 are integrable
in a neighborhood of 2 about £. The fact that the bounds are independent
of £ follows from the fact that the right hand side of Eq. (2.17) is translation
invariant. 0O

We now prove the following theorem.
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(7.2.3) Theorem. The kernel k(€,&«) of the operator K is such that for any
r > 0 we have

@18 [bE )W+l e < ko1 + )T

Proof. If we had just —r as the exponent on the right-hand side it would
be enough to use estimate (2.17) (see Problem 2). To gain the additional
—1/2 requires a longer proof. If we look at the explicit expression (2.16) we
realize that the part after the minus sign (arising from k2) is easy to deal
with, because of the exponential exp(—|¢|2/4) (see Problem 3). We thus
have only to prove that

(2.19)
2
r= Py fit i ool explg S Luyan

is bounded uniformly in £. We split the integration into Iy + I, where the
former refers to |v| > |£|/4 and the latter to |v| < |£|/4. We have

@2 B<@arE [ bl ep-glol

v|>3

which is obviously bounded. For I, we can restrict ourselves to |§| > 1,
because otherwise the result is clear. For [¢| > 1 we use 1+ |£ + v]> >
1+ 9J¢|%/16 and polar coordinates to obtain:

(2.21)
L =1+ € +/2(1 +9]¢%/16) ™"

« 2m /0 ~ /0 i exp(-——%(2l§|cos«9+ o )2 — %[vlz)]vlsin9d1v|d0
<(L+ [EP)F2(1 + 9[€[2/16)~"
1 o1 [ 1
x (2n/2 0 [ exp(~gloflold
=4(1 + [¢2)™1/2(1 + 91¢[?/16) 77 (2m)/2|¢| !

which for |£] > 1 is clearly bounded. In an intermediate step here we have
used the inequality:

/7r exp(~é(21§| cos § + |v|)? sin 6d6
0

(2.22) - )
< [ exp(—5lePe = (2mel .

—00
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Inequality (2.13) is thus proved. a

In the following we shall denote by B(X, ))) the set of all linear bounded
operators from a Banach space X" into a Banach space Y, and by C(X,))
its subset consisting of compact operators. When Y = X, we simply write
B(&) and C(X'). We also denote by L3 the Banach space of the functions

h such that (14 |£]2)#/2h is in L%°(R3). Then we can prove the following.

(7.2.4) Theorem. The integral operator K is in B(L?)NB(LF, LF, ), 8 > 0.
It is also in B(L?, L) and in C(L?).
Proof. The fact that K € B(L?, L$®) follows from Theorem 7.2.2. We now

prove that K € C(L?). Let xg be the characteristic function of {¢ : [¢] <
R}. Then in B(L?) we have (thanks to Theorem 7.2.3):

I1-xr)K | <CA+R)™ -0

(2.23) »
| K1-xr)|<CA+R)™ -0 (R-00).

In order to prove these results we apply the Schwarz inequality in a suitable
way; we just indicate how to prove the first of these relations (for the second,
see Problem 4):

— 2 u — ’
10~ xR)K P~ sup [ dc(1=xa@) | [ ki, mhin)|

< sup [ det - xn(®)) [ / dnk(s,n)] [ / dnk(s,n)(h(n)f]

lIB|l=1

< ko sup. / de(1L ~ xR(€)) (1 + €D [dnk(€, n)(h(n))?]

Irli=

<ko(1+|R)! "iﬁgl / d€ [ / dnk(E,n)(h(n))z]

<ko(1+1R)™ sup [ dn(hm)? = ho(1 + B
ikll=
In addition, x g K, because of Theorem 7.2.2, is a Hilbert-Schmidt operator.
Then, thanks to Eq. (2.23), K is compact, because the set of compact
operators is a closed linear manifold in B(L?). Finally the fact that K €
B(L*) N B(Ly, L§,,), for B > 0, follows from Theorem 7.2.3 and K €
C(L?). 0

We next consider the spectrum of L. Since in this section and the fol-
lowing ones we shall use several standard theorems on the perturbation of
linear operators, for the sake of the reader we state them here and refer to
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the book of Kato® for the proofs. We denote by K(...) the theorem (...)
in Kato’s book. In the following statements (where only the numbers of
the equations and some symbols have been modified with respect to Ref.
2) C(X) means the set of closed operators from X to X and a holomorphic
family of operators T'(k) of type (A) is ® such that D(T'(k)) = D (indepen-
dent of k) and T'(x)u is holomorphic in « for every u € D. We also recall
the notion of relative compactness used in the following statements. Let T'
and a be operators with the same domain space X (but not necessarily with
the same range space). Assume that D(T) C D(A) and for any sequence
u, € D(T)) with both u, and Tu, bounded, Au, contains a convergent
subsequence. Then A is said to be relatively compact with respect to T or
simply T-compact.

(K.IV.5.35) Theorem. The essential spectrum is conserved under a relatively
compact perturbation. More precisely, let T € C(X) and let A be T-compact.
Then T and T + A have the same essential spectrum.

(K.VIL2.6) Theorem. Let T be a closable operator from X to Y with D(T) =
D. Let T™,n = 1,2,...be operators from X to Y with domains containing
D and let there be constants a,b,c > 0 such that

(224) | T™u <™ Ya|ul +b] Tul), (meD, n=12...).
Then the series
(2.25) T(kyu=Tu+cTOu+2TPu+ ...  (ue D)

defines an operator T(k) with domain D for |s| < 1/c. If |&] < (b+
¢)"1, T (k) is closable and the closures T(k) for such & form a holomor-
phic family of type (A).

(K.VIL.2.7) Remark. The form of the condition (2.24) is chosen so as to be
particularly convenient when T® = T(® = ... = 0. In this case we can
choose ¢ =0 if

(2.26) | TOu |<a|lu| +b|| Tul,(ueD)....

(K.VIL.1.8) Theorem. If T'(k) is holomorphic in k near k = 0, any finite
systems of eigenvalues A (k) of T(k) consists of branches of one or several
analytic functions that have at most algebraic singularities near £ = 0.
The same is true of the corresponding eigenprojections and eigennilpotents

Qh(ﬁ).

We now prove the following theorem.
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(7.2.5) Theorem. The spectrum o(L) of the operator L is made up of a
discrete and an essential spectrum: the former is contained in the inter-
val (—vg,0], where vy = v(0) = 4(21)~'/2, while the latter coincides with
(—o0, —1p]-
Proof. This result follows from a particular case of Theorem K.IV. 5.35,
i.e., Weyl’s theorem on the perturbation of a self-adjoint operator® [the
multiplication by —v(|£])) by a compact operator (K)], and Theorem 2.1.
0O

Before ending this section we prove a result on the nonlinear term
I'(h, h) or the correponding bilinear operator I'(g, h) defined in Eq. (1.5).

(7.2.6) Lemma. The projection of I'(g,h) on the null space of L vanishes
and there exists a constant ¢ > 0 such that

(2.27) I @I r(hg) ISClRlg |l
in Ly for any B > Q.

Proof. The first part of the statement is obvious (because of the properties
of Q(f,g); the second part follows from the fact that |g] <|| ¢ || (1 +
|€|>)~8/2and hence for any piece I; (i = 1 — 4) in which we can split
I'(=IN+ Iy — I's — I'y) we have:

| (&) i(g, b) |
(2.28) <|| RO QR+ IE)™A2, RA+1EX)2) | 1Al L g
<haA+EPYP2 Rl lgl=Clhllgl

where we have noted that, e.g.,

A +IEP)PRA+IEP) PR < A+IEP + 1) P

2.29),
(229) S+ +1E)7P2 < (1 +|g*)~P/2

and this concludes the proof. O

Problems

1. Prove (2.15) and find explicit values for vy and v;.

2. Prove that for any positive r,j(§,v) =exp(— lv[?) 1+ (31 +
|€ +v]2)~" < constant. (Note that if |£ +v| < |v| then |¢] < 2|v| and if
|€ + v| > |v| then |£] < 2|€ + v|. In the first case one can easily prove
that j(&,v) < (64r)"; in the second case that j(§,v) < (4)7).
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3. Prove that (1 + [¢%) [ [(1 + [&]?)77[€ — &l exp[~(I€* + [&.1°)/4] is
uniformly bounded in £, for any s,7 > 0.

4. Prove that || K(1 — xgr) [< C(1+ R)"! - 0 (R — o0).

7.3 Spectral Properties of the Fourier-Transformed,
Linearized Boltzmann Equation

We want to look for a solution of the Cauchy problem of Eq. (1.3) in %3 or in
a periodic box. As a preliminary step we consider the linearized Boltzmann
equation, obtained by neglecting the nonlinear term in Eq. (1.3):

Oh Oh

S tE 5 = Lh

(3.1)

We first consider the case of 2 and use the Fourier transform in z:

(3.2) h(k,&,t) = (2r)~3/2 /h(:c,g, t)e k- d3s.

Then h satisfies

(3.3) %’t‘ +i€-kh=Lh
or, for short:
oh .
(34) 5 = B(k)h
where
(3.5) Bk)=L—-i-kI=K-—o(&k).
Here o(£; k) is a function given by
(3.6) o(& k) =v(|£]) +ik- &

Let us consider k as a parameter so that we deal with LZ(R3) for the
moment. We want to study the semigroup T'(¢; k) generated by B(k). The
first result is the following.
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(7.3.1) Lemma. The operator B(k) with domain D(B(k)) = {f(€) : f €
L?,|¢|f € L?} is an unbounded operator with domain dense in L?, gener-
ating a strongly continuous semigroup T(t; k) with

3.7) 1T k) < 1.

Proof. The multiplication operator S(k) = —a(¢; k)I generates the strongly
continuous semigroup

(3.8) U(t; k) = exp[—a(&; k)] 1.

B(k), being a compact perturbation of S(k), generates a strongly continu-
ous semigroup T'(¢; k) in L2. Estimate (3.7) follows because L is self-adjoint,
nonpositive, and —ik - vl antisymmetric. O

‘We note that this theorem establishes the existence of a unique solution
of the Cauchy problem for the linearized Boltzmann equation in L?; in fact
if the initial condition is h(0) = hg, thenh(t) = T'(t)ho where T'(t)h is the
inverse Fourier transform of T'(¢; k)ﬁo, where hg is the Fourier transform of
ho.

We shall now study the asymptotic behavior of T'(¢; k) when ¢t — oo.
To this end it is useful to recall the representation of T'(¢; k) in terms of its
Laplace transform R(\; k), which equals the resolvent of B(k):

(3.9) R(\; k) = (M — B(k)) L.

The mentioned representation reads as follows:

y+1i6
(3.10) T(t;k)h = —— s lim / exp(At) R(\; K)hd)
2mi - b—oo0 Jy_is
(¢t,7 > 0,h € D(B(k)). This is a formal relation that we shall presently
justify. To this end, we need a few results concerning the operator R(A; k).
We shall write Re) and Im for the real and imaginary parts of a complex
number A. The first result is given in the following lemma.

(7.3.2) Lemma. For any fized k, the operator R(); k) is an analytic function
of A in the half-plane ReX > —vy + € (e > 0) with the ezception of a
finite number of poles of finite multiplicity {\;(k)}. These poles satisfy the
following conditions:

1) Re)j(k) <0 and ReXj(k) =0 implies A=k =0.
2 |m; (k)] < cle).
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Proof. R(\; k) can be expressed as follows

R\ k) = (M — B(k))™! = (M - S(k) - K)~!

(3.11) =(I - R\ k)K) "R\ k)

where R(\; k) = (A — S(k))™! = (A + o(&; k)) "1 is the multiplication by
a function, analytic in A for A > —v. Since K is compact, (I — R(\;k)K)™!
exists as a bounded operator with the exception of countably many isolated
points. Eq. (3.11) shows that R(; k) has the same property. In addition the
points where R(A; k) is unbounded are those for which there is a function
¥ # 0 such that R(\;k)K = 9 or

(3.12) B(k)y = Mp.

Condition 1) follows from direct calculation of Re from this equation. Fur-
ther the compactness of K implies that the eigenvalues can only accumulate
near the line Re\ = —uy; this implies that for Rel > —15 + € (¢ > 0) there
is only a finite number of eigenvalues and condition 2) holds. O

Further information on R(); k) is provided by

(7.3.3) Lemma. For any e > 0 || KR(X\ k) ||= 0 for |k |— oo , uniformiy
for Red > —vg + € and | KR(A;k) ||— 0 (ImA| — oo) uniformly for
Re) > —vy + € and k such that |k| < ko , for any fized ko > 0.

Proof. In fact, if x g(£) is the characteristic function of the ball || < R, then
the square-integrability of the kernel of K implies (Schwarz’s inequality):

(313) | KxaROsk) < C( /I£ e

The last integral can be subdivided into two contributions, one ex-
tended to the subset [ImA + k- €] <| k[6 (6 > 0) and the other to the
complement of this subset in |£] < R. The first subset is not larger than
a parallelepipedon with two edges of length R and the third of length 26,
so that its measure is less than 2R?§ and in it the integrand is less than
€2, while the second set has measure less than 4mR%/3 and the integrand
is certainly not larger than (Jk|6)~2. Hence

(3.14) I KxrR(X;k) < CR[e™6 + R(|k|6)~]"/2.
If we choose § = (R/|k|)?/® we have

(3.15) | KxrR(X;k) ||< C(e)RY3|k|~1/3,
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On the other hand, Eq. (2.23) gives (thanks to || R(\; k) [|< €71):

(3.16) I K(1 - xr)R(AK) I Ce} (1 + R%) 72,
If we put together the two estimates and choose R = |k|'/®, we obtain the
first statement of the lemma. To prove the second one, let {ImA| > 2koR.

Then |ImA + k - £| > |ImA|/2 whenever |k| < kg and |§] < R, so that for
ReA > —1y + ¢,

(3.17) | KxrR(X; k) ||I< C(4nR®/3)M%(¢* + [ImA|*/4)V/2.

We can now choose here and in (3.16) R = |Im\|%/%, which is possible for
[Im)| > (2ko)%/3, since we have chosen [Im)\| > 2koR. ]

To proceed further, we need this lemma.

(7.3.4) Lemma. For any v = ReX > —1y, we have

y+i6
(3.18) [ IR ORI a3 <y + ) AR

—i8
Proof. If we recall the representation
(3.19) R(\ k) = / exp(—=At)U(t;k)dt  (Rel > —uvp)
0

and denote by x.(t) the Heaviside step function, we have

(3.20) R\ k) = (2m)~Y/? / ” exp(—At)[(27)2U (t; k) x4 (t)]dt.
0

(ReA > —1p) which shows that, for a fixed value of Re), R()\;k) is the
Fourier transform (in the variable ImA\) of the function of ¢

(2m)V/2U (t; k)x+ (t) exp[—(ReA)t].

Then Parseval’s equality gives

—ié

Al oo
(3.21) / | RO\ k)R |1 dh =27 /0 | Ut; k)b || exp(—27t)dt.

Since || U(t; k)h | <|| k|| exp(—wot), the lemma follows. o
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According to Lemma 7.3.2, at the right of the line ReA = —1y + ¢
(e > 0) there is only a finite number of eigenvalues A; and they can be
numbered as

(3.22) Re)d; > Redy > Redz > ...Re\, > -1y +e

We shall denote by P; the projector on the eigenspace of B(k) correspond-
ing to the eigenvalue ;. If the eigenvalue is not simple, we denote by m;
its multiplicity. In this case we only know that B(k) — A;I is nilpotent of
rank m; on the functions P;f obtained by projecting on the associated
subspace of dimension m;, but, in general, the functions of this subspace
are not eigenfunctions of B(k), because the associated matrix will in gen-
eral be a “Jordan block.” We remark that, in principle, we should write
Aj(k), Pj(k),... in place of A, P;j,..., but we shall do this only after the
proof of Theorem 7.3.5, when we shall discuss the dependence of these
quantities upon k.

Let us denote by P the projector on the subspace spanned by all the
P ie.,

T

(3.23) P=)"P;.

=1

We can prove the following.

(7.3.5) Theorem. Assume (for a given €) that Rel; # —vy + €. Then

r mi Lk
(3.24) T(t;k)P = j;(exp(Ajt)(Pj +3 =@
(3:25) | T k)(I - P) ||< Ceexpl(—vo + )]

Here the Q; are nilpotent operators associated with the Jordan block corre-
sponding to the eigenvalue A; and C is a constant independent of k. More
precisely (see Kato®, p. 181) they are the residue of —(A — X\;)R(\;k) at a
multiple pole of R(\; k).

Proof. The inverse Laplace transform for T'(¢; k) is given by Eq. (3.10),
which is no longer formal because of the estimate (2.18) . Further, we have

R()\; k) = (M — B(k))™*

(3.26) P 5 1
= (M - S(k) — K)~' = R(\ k)T — KR(\; k)

and hence
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(3.27) R(\ k) = R(A\ k) + RO k)KR(\ k)
and using again Eq. (3.26) on the right-hand side of Eq. (3.27):

(3.28) ROGK) = RO k) + RO k) — KR k) KB E).
Then

1 . y-+i6 _
(3.29) T(t; k)h =U(t; k)h + 5—s- lim ﬁ » exp(At)R(\; k)

x [I = KR()\; k)] KR(\; k)hdX

(v > 0). We now shift the integration line from ReA > 0 to ReA = —ip +e.
Since the integrand has only poles in ReA > —vg + €, we have

/ e exp(M)R(X; k)[I — KR(\; k)| "L K R(A; k)hdA
y—ib

(3.30) =2mi) Res exp(At)R(\; k)[I — KR(\; k)] " KR(); k)hdX
=177

—vg+e+ib
+ / exp(\)R(\; k)[I — KR(\; k)| ' KR(X\; k)hdA + Z

—vo+e—~ib
where
(3.31)
y+1i6 y—ib __ _ —
Z=( - / Yezp(M)R( k)T — KR k)] KR(); k)hd).
—vo+e—ib v(0)+€+ib

In order to evaluate the residues in Eq. (2.30), we first remark that,
because of (3.28), they are the same as the residues of R(A;k) (since JA; is
in the resolvent set of S). Then, because of the expansion of the resolvent
(Kato®, p.181), the following result follows:

Res exp(At)R(\; k)[I — KR(\ k)] "' KR()\; k)
(3.32)

m; tk .
= Res exp(At)R(\; k) = (exp(\;t)(Pj + ; a9

Next, because of Lemma 3.3, which also implies the boundedness of [I —
KR(X;k)]~! for Im) sufficiently large, and since for ReA > —vq:

(3.33) I ROK) =l (A + 3k - €+ v(€) T IS (Red +w) ™
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Il Z ||— 0 when § — oo. Finally, since (by assumption) there are no eigen-
values on Rel = —1p + ¢, || [[ — KR(\;k)]~! ||< C on any compact set of
that line and, because of the second statement of Lemma 3.3, on the entire
line as well, with C independent of k. Then, for any h,g € L?:

(3.34)

—vg+e+ibd
I / expM)RO )T — KROG )] x KB(A; k)hd>, g)|
—v0+e—18
6 w——
[(R(~vp + €+ i3 k)
&

<expl-( - 9] |
x [I — K(—vo + €+ it; k)] "' KR(~vo + € + iT; k)dr, g)|
<C || K || exp[—(vo — €)1] /_ i | R(~=v0 + € +ir; k)R ||
x || B(~vo +€—ir;k)g || dr|.

Then, because of Eq. (3.18) the last integral is majorized by w(y +
vo)"Y || A l|l g |I- This implies not only the convergence (for § — 0o) of the

operator f::g::j:; exp(Mt)R(\; k)[I — KR(\; k)] K R(); k)d) in the weak

operator topology, but also that its limit satisfies:

—vg+€e+ioo
| exp(Xt)R(X\; k)[I — KR(A\; k)] ' KR(X\ %) |
(335) —vp+e—100
<Cexpl-(vo— )] (t€Ry).
If we combine the estimates we obtain the theorem. 0

This important result was first obtained by Ukai'* and is a key result
for the treatment of the study of the asymptotic behavior of the linearized
Boltzmann equation and of the existence theory for the weakly nonlinear
Boltzmann equation.

The next step is due to Ellis and Pinsky® (see also McLennan!® and
Arsen’ev?):

(7.3.6) Theorem. One can find positive numbers ko and oo (< vg) and
functions pj(|k|) € C°([—ko, ko)), 5 =0,1,...,4 such that

a) for any k € R3 with |k| < ko, there are five eigenvalues \; given by
X;(k) = p5([kl) where

(336)  wi(kl) = iuIk| — V1K + O(KS) (K| —0)

and ugl) € R and ugz) € R,. In addition

Pi(k) = P (k/|k]) + |kIP (k/|K])

(337) Q;(k) =0,
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for i =1,2,...,5, where P}O) are orthogonal projectors and

5

(3.38) Po=Y"POk/Ik])

i=1

does not depend on k/|k| and is the projector on the five-dimensional
eigenspace of the collision invariants.
b) for any k € R® with |k| > ko, there are no eigenvalues with ReX < —oy.

Proof. The fact that the eigenvalues only depend upon |k| follows from the
fact that the linearized collision operator commutes with any rotation R of
R3 and Rk - RE = k- & hence if ¢(€; k) is an eigenfunction corresponding
to an eigenvalue ), then p(RE¢;Rk) is an eigenfunction corresponding to
the same eigenvalue, which thus can only depend on |k|. Please note that
the eigenfunction itself and the corresponding projector do not generally
depend on |k| alone, contrary to what is stated sometimes. We can now
replace k by ke (where e = k/k is a unit vector and & is +|k|) and look
for a solution depending analytically on &, according to Theorem K.VI1.1.8
on the analytic perturbations of linear operators® in L?, which, according
to Theorem K.VII.2.6 and Remark K.VII.2.7, applies here, because there
is a constant M, such that || e - &h ||< M(|| h || + || Lh |}); thus the
eigenvalues are analytic functions of . In particular, since for k£ = 0 there
are five eigenfunctions corresponding to the zero eigenvalue, for a sufficiently
small k there will be five eigenvalues (which may be distinct or not) whose
expression will be given by Eq. (3.36). In order to show that u§1) € R we
remark that the operator B(k) is invariant with respect to the product CP
of the operations P of changing x into —k and C of taking the complex
conjugate; the same invariance applies to the eigenvalues, and this proves
that ”§1) € R. To prove that u;z) € R, we remark that if ¢; are the
normalized eigenfuctions, then v;(k) = ¥;(0) + x¥}(0) + £2%;7(0)/2 + . ..
and hence:

Aj = (Y5, Bk);) = (¥5, Lp;) — ik(¥;, e - £45)
= (9;(0), Lt;(0)) + r(5(0), Le;(0)) + w(3;(0), L1;(0))
(3.39) + K2 (95(0), L}(0)) + (52 /2)(1;(0), Lap;” (0))
+ (%/2) (957 (0), Lp;(0)) — i(4h;(0), e - £45(0))
— ik?(9}(0), e - £;(0)) — ix*(;(0), e - £45(0)) + O(x®).

Since, however, the functions 1;(0) are collision invariants, many of the
scalar products above are zero and we are left with:

Aj = —in(1;(0), € - €4;(0)) + £ (¥5(0), L} (0))

(3.40) B Zﬂz[(d’; (0), e - £;(0)) + (v;(0), e fz/); (0))] + 0(53).
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We now remark that the term in square brackets is real (since the factor e-§
is self-adjoint, the two terms in the brackets are complex conjugate of each
other); but this would imply that ); is not invariant with respect to CP,
as it must be by the above argument, unless the term in square brackets
vanishes. Our final expression for A; will thus be

(3.41) X = —ik(¥;(0), € - €4;(0)) + £2(15(0), L5 (0)) + O(x).

This now coincides with Eq. (3.36) and indeed the coefficient of 2 is nega-
tive because of the properties of the linearized collision operator (Note that
;(0) cannot be a collision invariant because Li;(0) = ile - — (4;(0),e
£0;(0))19;(0) #0).

Finally since the spectrum of B(k) is discrete and depends analytically
on k, we can obtain (3.37) and (3.38); the latter is obvious and the former
follows from the fact that analyticity allows us to take a purely imaginary
% and obtain a self-adjoint operator B(ke), for which diagonalization is
possible (without Jordan blocks).

In order to prove b), we first prove that for any 6§ > 0, there exists
ko = ko(6) such that whenever |k| < ko and A is in the discrete spectrum
of B(k), the following holds:

(3.42) Re) > —0; implies ImAl < 6

(3.43) ReA> —pu/2  implies |A| <6

where —p is, among the nonzero eigenvalues of L, the closest to the origin,
while o is any real number between u and v(0).

In fact if (3.42) is violated, then, for some § > 0, there exists a se-
quence of real numbers {k,} converging to zero, a corresponding sequence
of eigenvalues {\,}, and a sequence {hy,}, of L2-functions (with unit norm)
such that:

(3.44) B(kp)hn = Anhn

(3.45) IImA,| > 6, Reln > —01.

Let us show that lim|Im)\,| < +oo . In fact, Eq. (3.44) states that

(3.46) Khy = n + V(&) + ikn - €)hn

Since K is compact, we may assume that Kh, — g in L2, by choosing
a subsequence, if necessary. Now if |ImA,| converged to +oco, we would
have, from (3.46), that h, should converge to zero, in contradiction to
|| hn ||= 1. Hence for some C, there are infinitely many indices n such
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that § < [ImA,| <C. Since 0 > Re),, > —01, we may extract a convergent
subsequence {\,} with limit A such that ImA # 0. Taking the limit in Eq.
(3.46), we obtain that h, has a nonzero limit in L?, which satisfies

(3.47) Kh=(\+v(€)h

and this, because of the self-adjointness of L implies ImA = 0, a contra-
diction that proves (3.42). To prove (3.43), we proceed in a similar way:
if (3.43) is violated, then, for some § > 0, there exists a sequence of real
numbers {k,} converging to zero, a corresponding sequence of eigenvalues
{\n} and a sequence {h,} of L2-functions (with unit norm) such that Eq.
(3.44) holds with

(3.48) —p/2 < Redy < 6.

Because of (3.42), which we have just proved, |ImA,| < é and we can extract
a subsequence {\,} converging to a real A with —pu/2 < A\ < —6. Taking
the limit in Eq. (3.46), we obtain, as above, Eq. (3.47). Since A # 0 and L
is self-adjoint, h must be orthogonal to the null space of L; but this would
imply, by the definition of u, A < u, a contradiction that proves (3.43).

In order to finish the proof, let us show that there is a neighborhood
N7 x N of the origin in R x C, such that if A\ = A\(ke) (e € §2?) with k € M;
and A € N, then ) is one of the five eigenvalues discussed in part a) of
the theorem. Let us define H = v~1K —v~1/2P,'/2 where P, projects on
the subspace spanned by the eigenfunctions of v~1/2Kv~1/2 corresponding
to a unit eigenvalue. Clearly, H is compact. Also H cannot have A = 1 as
eigenvalue. Otherwise there would be a function A such that Hh = h or

(3.49) Lh =v'2P, /?n.

Then projecting upon the null space of L we obtain that v'/2h is orthogonal
to the range of P, (Problem 1). Since P, is a projector this implies that
P,(v'/2h) = 0 and because of Eq. (3.49) h must be in the null space of L;
this together with P,(v'/2h) = 0 implies h = 0 (Problem 2) and A = 1 is
not an eigenvalue of H.

Let us now prove that there exists a neighborhood N x N3 of the origin
in R x C such that for (k, \) € N1 x Ny, the operator I —(v+ik-£+A)" v H is
invertible. The operator (v+ik-£§+))~'vH, being the product of a bounded
operator by a compact operator, is compact. By the Fredholm alternative
it is then sufficient to prove that there is no function h such that

(3.50) h=(+ik-£+X)"'vHh
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for k and X sufficiently small. Assume the contrary, i.e. that there exist
sequences {k,},{A.} converging to zero and {h,} (|| h. ||= 1) satisfying
(3.50); since H is compact and the factor multiplying it in (3.50) is bounded
uniformly and converges strongly to 1 when k& and A converge to zero, we
have that h,, converges to some g (with || g ||= 1) that satisfies the limiting
equation Hg = g. We have shown, however, that Hg = g implies g = 0 and
the invertibility of I — (v + ik - € + X\)"1vH is proved.

We are now ready to attack the original problem B(k)h = Ah by
rewriting it in terms of H

(3.51) vHh+ v 2Pu!/%h = (v + ik - € + Ak
or
(352) h=[—-(v+ik-E+ N WH) Y (v+ik-£+2)"W2P,u 2,

This form of the problem gives h once P,v'/2h is known; and since P,
has a finite range, we can compute P,v'/2h by solving a system of five
linear algebraic equations in five unknowns, by simply projecting Eq. (3.52).
The determinant of the system will be some analytic function of A and k,
D(\ k). For k = 0, Eq. (3.51) is equivalent to Lh = Ah and hence in
a neighborhood of A = 0 there will be only a fivefold degenerate zero of
D(, 0); by continuity, for a sufficiently small &, there will be just five zeroes
of D(), k) in a neighborhood of the origin in £ x C, as was to be shown.
This, when combined with (3.42) and (3.43) gives part b) of Theorem 7.3.6.

]

From this theorem and the previous one, we obtain the following.

(7.3.7) Corollary. There is a constant C > 0 such that
a) for any k € R with |k| < ko (where ko is the same as in Theorem 7.3.6):

n+1

(3.53) T(tk) =Y (exp(u;(|k))t)P;(K) + V (¢, k)
=0

(3.54) | V(t;k) |< Cexpl(—vo +€)t] (¢ >0)

b) for any k € R with k| > ko:
(3.55) | 7@ k) II< Cexp[(—vo+€)t]  (£20).

The constant C in Egs. (3.54) and (3.55) is independent of k because this
s guaranteed by Theorem 7.3.5.
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Problems

1. Prove that if P, projects on the eigenfunctions of v~/2Kv~1/2 cor-

responding to a unit eigenvalue. and v'/2P,v1/2h is orthogonal to the
null eigenspace of L then v'/2h is orthogonal to the range of P,. (Hint:
let xo = R, where 1), is a collision invariant; then P, projects on the
space spanned by. . .; then P, (xov'/?) = ... and (xaY/%,v/2h) = ...).
2. Prove that if P, is as in Problem 1 then P,(xv'/?) = 0 implies x =0
for any x in the null space of L. (Hint: use the details of Problem 1).

7.4 The Asymptotic Behavior of the Solution of the
Cauchy Problem for the
Linearized Boltzmann Equation

We can now establish a decay estimate for T'(), the semigroup generated
by the operator B = L—¢-8/0z in ordinary space. To this end we introduce
the L2-Sobolev space H*(R3;) and define

(4.1) H, = L*(R3, H*(R3,)), L% = L*(R3; LY(R%,))

and prove the following theorem.

(7.4.1) Theorem. For any s € R and q € [1,2], there is a constant C > 0
such that

(4.2) I T@h |, < CA+)™™ | hllgALe

(4.3) I T = Po)h ||z, < CA+ )™ V2 || h |l nzec
where m = 3(2 — q)/4q.

Proof. By Parseval’s equality for Fourier transforms we have

(4.4) I TR |I,= /(1 + 1k ) | T(t; k) |32 d°F.

Recalling Corollary 7.3.7, we split the integral into two contributions I; and
I,, referring to |k| < ko and |k| > ko, respectively. Then I, is bounded by
exp[~2(vo — €)t] || b |3, and

n+1
(4.5) I <C()_ L +exp[-2w0— )] || hllE,)

j=0
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where

(4.6) L= / exp(2Rep; ([K|)t) || Ak, ) 25 .
|k|‘lek0

By Theorem 7.3.6, there is a positive constant o, such that
(4.7 Rep;(|k|) < —ok®  (j=0,1,...,n+1,k| < ko).
Then by Holder’s inequality

(4.8) I <( /

exP(—Uql!k |2 t)dk)l/q ” il(kv ) “izﬂ(g}tﬁ.[ﬁ(ra)))
k| <ko k%

where (1/p’ + 1/¢' = 1). The integral is majorized by

/ exp(—oq'|k|*t)dk
(4.9) |k|<ko
<explog'|ko|?] /eXP[—UQ'lk 1 (1+t)dk < CQA+1)~%?

while the norm in (4.8) is majorized, thanks to a well-known interpola-
tion inequality for the Fourier transform!2, by (2m)2~%/%" ||| A ||f2]|2.<
@227 Il b |lzallfa= @)~ || h |3es , with ¢ = 29'/(29' - 1),
which proves (4.2). (Here we have used the fact, that, by convexity,

I A M2 llze <[l A llzellz2,

for ¢ < 2). To prove (4.3) we proceed in the same way, but now we take
into account that we get an extra factor |k|¢ in the integral estimated in
Eq. (4.9), thanks to Theorem 7.3.6; this leads to an exponent 3/2+¢'/2 in
place of 3/2 and hence to an exponent 3/(2¢’) + 1/2 in the final estimate
(in place of 3/(2¢"). O

(7.4.2) Remark. The exponent m = 3(2 — ¢)/4q in the previous theorem is
larger than 1/2 if ¢ € [1,6/5) and takes the maximum value 3/4 for ¢ = 1.

The result that we have just proved indicates that the solution decays
in time and that the component orthogonal to the collision invariants decays
just a little bit faster. Since we want to use this result as a tool for attacking
the weakly nonlinear problem, we must face the problem that I'(h, h) is not
well defined in H,, but it is, as will be shown in the next section, in the
space H, g defined by:

he H,p=he L (RE H (R,)),

(4.10) I B = sup(L+ €112 | 1€ ey < oo
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Hence, before proceeding further, we translate the decay estimate, which
we have just found, into H, g, as first suggested by Grad®. Let us set

(4.11) |hlm,s,8 = sup(l + )™ || h(t) ||s,8
£>0
and prove the following.

(7.4.3) Theorem. Let ¢ € [1,2],s € R,6 > 0 and m = 3(2 — q)/4q and
h = h(z,£) a function of H, N L2 N H, 3. Then there is a constant C > 0
such that, for any h:

(4.12) |T(#)(I = Po)"hlm+ns2,6,8 < C |l A llm,nLaznn, 4 -

Proof. This result can be obtained from the circumstance that the semi-
group U(t) generated by the operator A = —¢ - 3/0z — v(£)I is related to
the semigroup T'(t) generated by the full Boltzmann operator B = A+ K,
through

(4.13) T(t)g=Ul(t)g + /0 U(t — s)KT(s)gds.

Here g (“the initial data”) is a function of z, ¢ belonging to some Banach
space, such as those used before. Eq. (4.13) is nothing other than the inte-
gral form of Eq. (3.1), obtained by rewriting the latter as

% 4
ot
and integrating along the characteristic lines of the left-hand side. Let us
put

£-?+u(§)h=Kh

(4.14) -

(4.15) |hlm,x = Sl;lg(l +0)™ || h(t) llx,
>

a special case of which is Eq. (4.11). We are now going to exploit Theorem
7.2.4 and the fact that | U(t) ||< exp(—wpt) in both H, and H, . Then
Eq. (4.13) readily gives (see Problem 1):

(4.16) IT()glm,x < C Il g llx +T(E)glm,y

for the pairs X = H,,Y = H,, and X = H,541,Y = H,; 3,8 > 0. This
permits an iterative use of this formula with respect to 3 to show that it
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also holds for X = H,3,Y = H, (8 > 0). The proof is now complete,
because Theorem 7.4.1 gives an estimate of || T'(t)g ||m, &, - O

A problem we have to face when dealing with the nonlinear problem is
that I'(h, h) is not bounded in H, g. In order to circumvent this difficulty,
we shall need the smoothing properties of time integration, in the form of
the following.

(7.4.4) Theorem. Let 0 < m' # 1/2,s € R, > 0, and 0 < m <
min (2m/,5/4,2m’ +1/4). Then

(4.17) |Ghlm,s, < C(lh2m,s,8 + [VRl2m: H,AL12)
where
t
(4.18) Gh = / T(t — s)(I — Po)vh(s)ds.
0

Proof. For any a > 0 we have

(4.19) |Grhblm,s,8 < Clhlm,sp (n=0,1)
where
t
(4.20) Gph = / Ut — s)(I — Py)"vh(s)ds (n=0,1).
0

In fact, we have, taking the norm in H*(R2),
| Gnh || ms(s3)
< [ owl-v©)e )
(421)  (I=Po)"v(&) I h(-,&:8) lae(m3) ds
<0 [ expi-(€)(t - MAE)L+8) 1 | 67) 2 bl s
SO A1) M1+ D) P2 (0 =0,1)
where we have used the fact that I — Py is a bounded operator. Eq. (4.19)

now easily follows. In order to obtain (4.17), we remark (see Problem 1)
that

(4.22) Gh = G1h+ Go([v(.)] "' KGh)

and, proceeding as in the proof of (4.16), we obtain (for any m > 0):
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(4.23) |Ghlm,s, < C(IG1hlm,s,p + |Ghlm, 1)
Combining this with Theorem 7.4.1 (for ¢ = 1) yields (4.17). O
Problems

1. Prove (4.16).

2. Prove (4.22) (first differentiate, use the relation between the generators
of T and U, and then integrate again).

3. Complete the proof of Theorem 4.4 by showing that Eq. (4.23) and
Theorem 4.1 yield Eq. (4.17).

7.5 The Global Existence Theorem for the
Nonlinear Equation '

We now have all the preliminary results to be used to solve Eq. 1.3. Using
the operator G defined in Eq. 4.18, we can write the corresponding integral
equation in the following form:

(5.1) h(t) = T(t)ho + G([v(.)] 7' T'(h, h))(t) = N(h)(t)

where Lemma 7.2.6 was taken into account. Eq. (5.1) shows that we must
find a fixed point of the nonlinear mapping N. To this end, we first need
the following lemma.

(7.5.1) Lemma. Let m > 0,s > 3/2, and § > 2. Then there is a constant
C > 0 such that

(52) O LR g)l2m,ap + 1T (hy ) |2m,m,0L02 < Clhlm,s,8l91m,s,6-

Proof. The theorem is a consequence of the following three facts: (i) H, g is
a Banach algebra (i.e., a Banach space closed with respect to multiplication)
for s > 3/2; (ii) Hj is continuously imbedded in Hy g if 8 > 3/2; (iii) if h, g €
L?, then uv € L' (this is applied to the dependence on z). Consequently
the lemma follows from Lemma 7.2.6. O

Let us take ¢ € [1,2] and set m = m' = 3(2 — ¢)/(4q) so that the
conditions of Theorem 7.4.4 are satisfied. Combining Theorems 7.4.3 and
7.4.4 with Lemma 7.5.1, we see that the operator N appearing in Eq. (5.1)
satisfies:
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IN(h)lm,s,8 < Co |l Bo ||, snrez +Cilhli
IN(R) = N(9)lm.s,8 < C1(|hlm,s,8 + |glm,s,8/h — Glm,s,8)-

This shows that N is contractive if hg is sufficiently small. We have thus
proved the following theorem.

(5.3)

(7.5.2) Theorem. Let q € [1,2],s > 3/2, and 3 > 2. Then there are positive
constants cg and ¢, such that for any hy with

(5.4) Il ho llo, snLe2< co

Eq. (5.1) has a unigue global solution h € L°°([0,00); Hy g) satisfying

(5.5) Ihlm,s6 < €1l ho llH, 502 0,2 (m=3(2 - g)/(49).

This result was proved independently by N. B. Maslova and A. N.
Firsov®, Nishida and Imai'!, and Ukai'3, after the paper by Ukail* had
given the basic results on the weakly nonlinear Boltzmann equation. In
the latter paper Ukai had actually given a deeper result proving that the
solution is more regular than proved in Theorem 7.5.2 and is actually a
classical solution of the Boltzmann equation. In order to discuss this result,
we define

(56)  H,p={he Hopll (1 - xr(€+ kDI lls,5— 0 as R — oo}

where k is the variable conjugate to z in the Fourier transform. Ukai and
Asano'® proved the following facts: (i) U(t) and hence T'(t) are, for any s
and (3, Cy-semigroups on H 5,3, although not in H, g, with the domains of
the generators related by:

(5.7) D(4) = D(B) D Hurr,p41.

Also
(5.8) , ‘ .
[v()"I(.,.) maps H,3x H,s into H,p if s>3/2,8>0.

It follows that N(h) € C°([0,00); H, ) if b € C°([0,00); H, 5) and if ho €

H, s3. Eq. (5.7) with s—1, 83— 1 in place of s, 3 then leads to Theorem 7.5.3.

(7.5.3) Theorem. Let h, hg be as in Theorem 5.2. If, in addition, hy € HS,B,
then h € C°([0, 00); H, 3) NCY([0, 00); Hs—1,5-1) and is a classical solution
of Eq. (1.3) with initial value hy and hence f = M + M'/?h is a classical
solution of Eq. (1.1).
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Since H, 3 € H, . 3_. for any € > 0, the previous two theorems lead
to the following.

(7.5.4) Theorem. Let h, hg be as in Theorem 7.5.2. Then
h € L*=([0,00); Hs 5) N C°([0,00); Hy—c g—c) N C*([0,00); Hs—1-¢,5-1-¢)

(€ > 0) and is a classical solution of Eq. (1.3), and hence f = M + M'/?h
is a classical solution of Eq. (1.1).

This is the theorem originally given by Ukai!®!4; the conciseness of his
papers and the fact that many readers did not appreciate the meaning of
the “—¢€” in the subscripts of Theorem 7.5.4 generated the rumor, unfortu-
nately echoed by some of the books on kinetic theory, that the statement
of Ukai'!''* was not completely correct, but this, as we have seen, is not
the case.

7.6 Extensions: The Periodic Case and Problems in
One and Two Dimensions

It is easy to see that the previous arguments also provide the global exis-
tence for the Cauchy problem for Eq. (1.3) when the solution is looked for
in a box with periodicity boundary conditions. This result has a physical
meaning because the solution of the problem in a box with specular reflec-
tion can be reduced” to that with periodicity conditions by considering 23
contiguous boxes, each of which is the mirror image of the neighboring ones
(Problem 1).

In the periodic case, it is natural to use the Fourier series instead of
the Fourier integral. The proof is actually simpler because & is never close
to the origin (unless k = 0). Then Theorem 7.4.1 simplifies because the
projection onto the subspace spanned by the collision invariants does not
decay in time and the remaining part decays exponentially. We remark
that the reason for the decay is different in the two cases. In a bounded
domain, the dissipativity of L has a crucial role together with the fact
that the natural basis for representing the space dependence of the solution
is discrete (a Fourier series replaces the Fourier integral). In the case of
#3 the dispersion properties of the free-streaming operator ensure a decay
(although not exponential) in time.

In fact Theorem 7.4.1 is now replaced by the following.

(7.6.1) Theorem. For any s € R, there is a constant op > 0 such that

(6.1) [ T®h g, <C | b lla,
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(6.2) | T()(I — Po)h ||, < Cexp(—oot) || b || 1,

where C > 0 is independent of u and t > 0.
Here, of course, H; = L?(R3¢; H*(T2)), where T2 is a three-
dimensional torus and (4.4) is, e.g, replaced by

(6.3) I TR ,= D A+ | k) || T(t kA, ) 113 -
keZ3

Similarly, the other results for the case of 3 can be translated into
theorems for T3 to arrive at the global existence result for the periodic
case.

(7.6.2) Theorem. Let s > 3/2 and 3 > 2. Then there are positive constants
co and ¢, such that for any hg with

(6.4) Il ho lla,, 5 < co-

Eq. (1.1) associated with periodicity boundary conditions has a unique global
solution h € L*([0,00); H, ), which, if, in addition, Pohy = 0, then
Pou(t) =0 for allt > 0 and

(6.5) sup exp(aot)|hlm,s,p < c1.
T>0

For the sake of clarity, let us remark that the projection Py is taken in
the Hilbert space L?(R3; x T3) and thus the restriction Pyho = 0 is not so
important, because it can always be satisfied by an appropriate choice of
the parameters in the Maxwellian M. This choice is, of course, not available
in the case of R3¢ x R3,, because the Maxwellian is constant in z and hence
not integrable in R3,.

Theorem 6.2 is due to S. Ukai'* and was the first global existence the-
orem concerning the Cauchy problem for the space-inhomogeneous Boltz-
mann equation.

Another important remark concerns the solution of the Boltzmann
equation when the data, and hence the solution, depends on just one or two
space variables. The existence theorems in bounded domains apply without
any difficulty (see Problems 2 and 3), because one has only to restrict k
to belong to Z and Z? rather than to Z3. The matter is more delicate in
one and two dimensions, because of the role played by the space dimension
in the estimates of Theorem (4.7). As remarked by Ukail®, however, the
results remain valid in this case as well (see Problems 4 and 5).
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Problems

1. Show that the initial value problem in a box with specular reflection
reduces to the problem with periodicity boundary conditions (see Ref.
6).

E)xtend the theorem on the torus T3 x R3 to T2 x RE.

Extend the theorem on the torus T3 x R to Ty x RZ.

Extend the existence theorem from R3 x 2 to ®3 x R2.

Extend the existence theorem from R3 x 2 to R, x R2.

AN S S

7.7 A Further Extension: Solutions Close to a Space
Homogeneous Solution

The constructive existence theory developed so far in this book essentially
concerns data that are space homogeneous, small perturbations of a vac-
uum, or small perturbations of equilibrium. It is natural to try to handle
another situation, i.e., the case when the initial data are sufficiently close
to a space homogeneous distribution, or, in other words, the case when the
space gradients are small.

To fix the ideas we shall consider the periodic gas, i.e., a gas in a
three-dimensional flat torus T2. Let fo(z,£&) be the initial value for the
distribution function. Then we define

(7.1) () = [ fole e
and let
(7.2) uo(x,€) = fo(z,£) — go(§)-

Then one can hope to prove a global existence theorem for solutions of the
Boltzmann equation with initial data fo, which satisfy a smallness assump-
tion on ug, on the basis of the following steps:

Step 1 (Local theorem). Let g be the solution of the homogeneous problem
with initial data go:

& % Qe s0) =

If we set

(7.4) u=f-g
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where f is assumed to solve the Boltzmann equation with initial data fo:

(7.5) Uved—oun  s0=1
then u satisfies
(6 G T =200+ Qs u(0) =u.

For this problem it is conceivable to establish a local existence theorem in
[0,1], where t; is as large as we want, provided u is small enough.

Step 2 (Approach to equilibrium). We know (from the study of the space
homogeneous problem) that g(t) approaches a Maxwellian M as t — oo.

Step 8 (Perturbation of equilibrium). Thanks to step 2 and choosing ¢; in
step 1 sufficiently large, g(¢1) is simultaneously close to M and f(¢;). We
can then use this circumstance to try to exploit the theory developed in
the previous sections for solutions close to a Maxwellian in order to extend
the solution to (t;,00).

Unfortunately the above strategy cannot be carried out so easily, be-
cause the words “close” and “small,” which we have repeatedly used, refer
to different topologies.

Let us analyze step 2. We know the following proposition from the
theory of space homogeneous solutions (see Chapter 6).

(7.7.1) Theorem. Let go € B,(s < so) with so sufficiently large. Then

1) lim o)) =M =0 (r<s)
where M is the Mazwellian with the same conserved moments as go.

The theorem (where B, is the Banach space with norm | g ||=
sup (1 + [€[%)*/2]g(€)|) is due to Carleman® and strengthens our analysis
from Chapter 6.

We remark, however, that even assuming that g is bounded by a
Maxwellian, we do not know that the same is true for g(t). Actually, we have
a control on the solution in spaces (such as B,) with polynomial weights
only. This fact is either an unexpected feature or a gap in the rather com-
plete theory for the space homogeneous Boltzmann equation. As a matter
of fact, because of this circumstance, Steps 1 and 3 of the above strategy
become problematic. In fact, the theory of small deviations from equilib-
rium, as discussed in the present chapter, requires a Maxwellian bound at
t = 0, and this makes it impossible to apply this theory to the problem
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under consideration. There is, however, a suitable decomposition of veloc-
ity space, which, when combined with the theory discussed so far and new
estimates of the collision operator, allows us to prove the following theo-
rem, due to Arkeryd, Esposito, and Pulvirenti?, which extends the analysis
of the solutions close to equilibrium to the case of polynomially bounded
perturbations.

(7.7.2) Theorem. For fized so and ly sufficiently large and any s > sy and
1 > ly, we can find b,y > 0, such that, if u, € H; 5 with

(7.8) Il wo ll1,s< B,

then there exists a unique classical solution of the Boltzmann equation f =
M + u (where M is the Mazwellian associated with fo), where

(7.9) we L®([0,T],H;,) NCH{[0,T), Hi—1—cs-1-¢)

satisfying the bound:
(7.10) I u(t) lia< be™.

The proof of this theorem is rather technical and will be omitted here.
For the proof see the paper by Arkeryd, Esposito, and Pulvirenti?.

The next step in our program is the proof of a local existence theorem
in Hl,s~

(7.7.3) Theorem. Under the same assumptions as in Theorem 7.7.2, let go
and ug be as in Egs (7.1) and (7.2), with go € Bsy1,u0 € Hy s and

1
(7.11) Il wo {i,s< 510 exp(—2t;Clog4)
where t; > 0 is given and C is large enough. Then there is a unique classical
solution f = g + u of the Boltzmann equation with initial datum fy up to

time t,. Moreover:

(7.12) I wll,s<]l wo |li,s exp(2t1C log4).

The proof of this theorem is also rather technical: it is based on sharp
estimates of the collision operator and will be omitted here. For the proof
see the paper by Arkeryd, Esposito, and Pulvirenti?.

With these results at our disposal, we are now in a position to prove
the following theorem.
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(7.7.4) Theorem. Let go and ug be as in Eqs (7.1) and (7.2), with go €
Bsi1,ug € Hy s with s > 89,1 > lo and s, ly sufficiently large.

Then there is a unique positive global classical solution f = g+ u of the
Boltzmann equation with initial datum fo, where g solves the homogeneous
equation and

(7.13) u € L®([0,00), H,5) N C*([0,00), Hj—1—¢,s—1-¢)

provided || up ||1,s is sufficiently small. Moreover, f(t) — M (where M is
the Mazwellian associated with fo) in H; 4, ast — oo .

Proof. The proof can be easily obtained thanks to Theorems 7.7.2 and 7.7.3.
In fact, for fixed s and [, by Theorem 7.7.1, for any b > 0

(7.14) lgt)— M ||,<b/2 for t>t.

provided t, is large enough. By Theorem 7.3

(7.15) I £() = g() o=l w(t™) [l1,s< b/2

provided || ug |15 is small enough. Finally

(7.16) I FE) = M o<l u(t™) e + 11 9(87) — M